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ABSTRACT 

Target and pattern recognition systems are in widespread use.  Efforts have been made in 

all areas of pattern recognition to increase the performance of these systems.  Feature 

extraction, feature selection, and classification are the major aspects of a target 

recognition system.  This research proposes algorithms for selecting useful statistical 

features in pattern/target classification problems in which the features are non-Gaussian 

distributed. In engineering practice, it is common to either not perform any feature 

selection procedure or to use a feature selection algorithm that assumes the features are 

Gaussian distributed. These results can be far from optimal if the features are non-

Gaussian distributed, as they often are. This research has the goal of mitigating that 

problem by creating algorithms that are useful in practice. 

This work focuses on the performance of three common feature selection 

algorithms:  the Branch and Bound, the Sequential Forward Selection, and Exhaustive 

Search algorithms. Ordinarily, the performance index used to measure the class 

separation in feature space involves assuming the data are Gaussian and deriving 

tractable performance indices that can be calculated without estimating the probability 

density functions of the class data. The advantage of this approach is that it produces 

feature selection algorithms that have low computational complexity and do not require 

knowledge of the data densities. The disadvantage is that these algorithms may not 

perform reasonably when the data are non-Gaussian. This research examines the use of 

information-theoretic class separability measures that can deal with the non-Gaussian 

case. In particular, this work shows that the Hellinger Distance (a type of divergence) has 

very desirable mathematical properties and can be useful for feature selection when 

accompanied by a suitable density estimator. 

The suitable density estimator for this research is the multivariate kernel density 

estimator.  In selecting the best feature subset of non-Gaussian distributed features, 

results show that the Hellinger distance outperformed the other class separability 

measures in several instances highlighted in this report.  
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EXECUTIVE SUMMARY 

Target and pattern recognition systems are growing in widespread use.  Efforts have been 

made in all areas of pattern recognition to increase the performance of these systems.  

Feature extraction, feature selection, and classification are the major aspects of a target 

recognition system.  This research proposes creating algorithms for selecting useful 

statistical features in pattern/target classification problems in which the features are non-

Gaussian distributed. In engineering practice, it is common to either not perform any 

feature selection procedure or to use a feature selection algorithm that assumes the 

features are Gaussian distributed. These results can be far from optimal if the features are 

non-Gaussian distributed, as they often are. This research has the goal of mitigating that 

problem by creating a useful feature selection algorithm that can be used in practice. 

The approach is to focus on the performance of three common feature selection 

algorithms:  the Branch and Bound, the Sequential Forward Selection, and the Exhaustive 

Search algorithms. Ordinarily, the performance index used to measure the class 

separation in feature space involves assuming the data are Gaussian and deriving 

tractable performance indices that can be calculated without estimating the probability 

density functions of the class data. The advantage of this approach is that it produces 

feature selection algorithms that have low computational complexity and do not require 

knowledge of the data densities. The disadvantage is that these algorithms may not 

perform reasonably when the data are non-Gaussian, as they commonly are in practice. 

This research examines the use of information-theoretic class separability measures that 

can deal with the non-Gaussian case. In particular, this work shows that the Hellinger 

Distance (a type of divergence) has very desirable mathematical properties and can be 

useful for feature selection when accompanied by a suitable density estimator. 

The class data sets used included several simulated data sets and the classic Fisher 

iris data set for classification.  The simulated data sets include the two Gaussian target 

classes case, the one Gaussian and one non-Gaussian case, and the two non-Gaussian 

classes case.  The data sets were divided into training and test sets and were processed 



 xvi 

with the feature selection and classification algorithms.  The classifier used for this 

research was the Bayes classifier using probability density function (PDF) estimates. 

This work employs a multivariate kernel density estimator along with the 

Hellinger Distance to do feature selection. Unlike some other distance measures, the 

Hellinger does not assume Gaussianity; therefore, the operation requires an estimation of 

the PDF.  Using the Parzen kernel density estimator with a Gaussian kernel, we generated 

the PDFs for each class.  The smoothing parameter for each estimate was selected using 

an algorithm presented by J. Bibb Cain [1].   

Once the PDFs for each training set are generated, the classes are processed with 

the feature selection algorithms.  Each of the three selection algorithms mentioned above 

were used with the distance measures: Bhattacharyya, Mahalanobis, and Hellinger.  The 

best two and three feature subsets were chosen among the available feature combinations, 

and the chosen subset for each feature selection algorithm was classified. 

Using the Bayes decision theory for classification, we computed the conditional 

probability densities for each test vector. The ratio of these two probabilities, known as 

the likelihood ratio Λ(x), is computed for each test vector and compared to a threshold 

value.  If the ratio is less than the threshold, the test sample is classified as H0, and if it is 

greater or equal to the threshold, it is classified as H1.  

After classification, the test sets are analyzed to determine the correct 

classification rate.  A 95% confidence interval was computed for each correct 

classification rate and test set size.  Another method of evaluating overall performance is 

the construction of the receiver operating characteristic (ROC) curve.  In order to 

construct the curve, the probabilities of detection and false alarm for each test were 

computed. 

The results for the tests in this research are promising.  For the case when both 

target classes have Gaussian feature distributions, all algorithms performed roughly 

equally.  This is expected because the Bhattacharyya and Mahalanobis distance measures 

assume the distributions are Gaussian, and as long as the PDF estimate is fairly accurate, 

the Hellinger distance should provide comparable results.   
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The disparity in results is first evident when one of the class feature distributions 

is non-Gaussian.  Here, the Gaussian assumption in the Bhattacharyya and Mahalanobis 

distance measures introduced errors in selecting the proper feature subset.  The correct 

classification rates for these feature selection algorithms was markedly lower than that for 

the subset chosen by the Hellinger algorithms.  For the case when both simulated target 

classes are non-Gaussian, the Hellinger again outperformed the other distance measures 

in each of the feature selection algorithms. 

In order to establish a benchmark test, the classic Fisher iris data for iris flowers 

was also used in this research.  This data set consists of three classes of irises (Versicolor, 

Virginica, and Setosa) with each class having four features and 50 measurements of each 

feature.  In order to continue the two-class problem, only the Versicolor and Virginica 

classes were used.  With this data set, the classification rates among the three distance 

measures was the roughly the same.  Despite selecting different subsets of features, the 

Hellinger and Bhattacharyya algorithms provided a correct classification rate of 95% 

with two features and 97.50% with three features.  The Mahalanobis algorithms provided 

a 95% classification rate for subsets of two and three features.  With all four features, the 

Bayes classifier achieved a correct classification rate of 95%.   

These results demonstrate the idea that feature selection is an important process in 

the recognition process. Some features obtained in the feature extraction process may be 

redundant or detrimental to the classification process and can be removed to save 

computational complexity without a significant loss in classification performance.  In 

order to ensure the proper subset of features is selected, using a distance measure that 

does not assume a Gaussian distribution proved much more capable in this research.  The 

greater correct classification rates represent an improvement to the existing feature 

selection algorithms.   
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I. INTRODUCTION 

A. BACKGROUND 

Automatic target recognition (ATR) is an application of modern pattern 

recognition.  Pattern and target recognition are becoming more commonplace throughout 

a broad spectrum of applications.  Image, voice, facial, and human iris recognition 

systems are growing in popularity.  This scientific discipline involves classifying objects 

into a number of categories or classes.  The objects can be images, waveforms, or any 

number of measurements that need to be classified.  In generic terms, objects are simply 

referred to as patterns.  Most ATR systems can be generally described in terms of the 

diagram shown in Figure 1. 

 

Figure 1.   Block diagram for a basic pattern recognition system. 

The critical steps in ATR lie in the “signal representation” portion of the system.  

This area consists of data pre-processing, feature extraction, and feature selection.  This 

area is of great importance because each classifier can only perform as well as the quality 

of information it is provided.  If the classifier is passed “garbage,” it will output 
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“garbage.” After the data have been processed and features have been extracted, the 

feature selection process selects only the most critical subset of features for use in 

classification.  These are the features that provide the maximum separation among the 

target classes of samples in multi-dimensional feature space.  A major problem in pattern 

recognition is the sheer number of features available for the design of a classifier. The 

number of features at the disposal of the designer of a classifier can easily reach over a 

few dozen or even into the hundreds.  Reducing the number of features to only a select 

few greatly reduces the computational complexity of the classification process.  Also, 

feature selection can reduce the effects of mutual correlation between sets of features.  

Feature selection ensures that added features to the final subset only add significant value 

to the quality of classification. 

There are several techniques available for feature selection.  The most commonly 

used are the Sequential Backward Selection (SBS), Sequential Forward Selection (SFS), 

Branch and Bound (B&B), and Exhaustive Search [1].  The Exhaustive Search method is 

the most accurate method as well as the most computationally intensive.  This method 

requires every possible combination of features to be evaluated in order to determine the 

globally optimal subset of features.  For example, if the number of features available is 

20 and the designer wishes to limit the feature vector to 10 features, the Exhaustive 

Search algorithm must evaluate all 184,756 combinations (N things taken P at a time).   

Typical criterion functions used in all of these feature selection algorithms often 

achieve suboptimal results because the functions or algorithms assume the class data are 

Gaussian distributed when they are not.  Traditional feature selection algorithms assume 

Gaussianity because that case is tractable, not because of optimality.  This research aimed 

to create a new feature selection algorithm that utilized a class separability measure 

which satisfies the requirements of a metric but does not require the Gaussian 

assumption.  This requires the use of a class separability measure that has not yet been 

used in feature selection: the Hellinger divergence distance. 
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B. OBJECTIVE 

There are several commonly used class separability measures in feature selection.  

This research utilized the Bhattacharyya and Mahalanobis distance measures for 

comparison to the Hellinger distance.  The Mahalanobis assumes that the two classes are 

Gaussian distributed, even if they are not.  Also, common implementation of the 

Bhattacharyya involves restricting the algorithm to the derived expression for the 

Gaussian case.  This invalid assumption can introduce errors into the feature selection 

algorithm and, ultimately, lead to the selection of a suboptimal feature subset.  In an 

attempt to reduce or eliminate this effect, this research instituted the Hellinger distance 

measure in three different feature selection algorithms.  The Hellinger distance measure 

does not assume the class distributions to be Gaussian while also satisfying the 

requirements of metric.  This research required data simulation, probability density 

function (PDF) estimation, feature selection, and classification algorithms, all coded 

using MATLAB.  This research aims to improve the correct classification rate of pattern 

recognition systems by choosing the best feature subset from the set of all features 

available by using the Hellinger distance. 

C. RELATED WORK 

In the areas of pattern recognition and data mining, feature selection is extremely 

important.  Countless research hours have gone into developing, implementing, and 

evaluating many feature selection algorithms. Mucciardi and Gose compared seven 

different techniques for choosing subsets of pattern recognition properties [1].  The 

techniques they evaluated involved correlation tests, eigenvector evaluations, and 

expected probabilities of error.  Their results on simulated and real data show that several 

feature selection methods can perform equally. Another research project proposed the use 

of information theory in feature subset selection.  Koller and Sahami presented a feature 

selection algorithm that used the cross-entropy between features to minimize the amount 

of predictive information lost when discarding features from the subset [2]. Similar 

research was conducted Yang and Pederson, in which they evaluated information gain, 

mutual information, and text strength for feature selection [3].  Bissinger used the 
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Hellinger distance measure in the classification of underwater acoustic signals and 

compared it to the Log-Likelihood ratio classifier (LLRC) [4].  His results showed that 

the Hellinger distance was robust to class outlier information and to imperfect class 

models.  The minimum Hellinger distance classifier performed equally or better than the 

LLRC [4].  These research results all contribute to the motivation behind implementing 

the Hellinger distance into a feature selection algorithm.   

D. APPROACH 

For this research, the simulations and codes were written in MATLAB.  This 

required the generation of simulated multivariate data, the estimation of multidimensional 

PDFs, the evaluation of several divergence measures, and the classification of test data 

given the subset of features selected from the training data.  All MATLAB m-files and 

functions used in this research are attached in the Appendix.   

E.  THESIS OVERVIEW AND ORGANIZATION 

In Chapter II, the data classification process is explained using the Bayes decision 

theory as a basis for classification.  This includes discussions of the likelihood ratio, 

correct classification rates, receiver operating characteristic curves, and statistical 

confidence intervals.  The performance measures for a classifier are explained and 

illustrated thoroughly. 

In Chapter III, the theory, mathematics, and motivation behind PDF estimation 

are presented.  The method of PDF estimation used in this research, the Parzen kernel 

density estimation, is explained.  The various PDF estimates that were generated for this 

research and the selection of the parameters needed for this algorithm are described. 

In Chapter IV, the idea of feature selection is introduced.  The different feature 

selection algorithms are then explained in a theoretical sense, followed by each of the 

three divergence measures evaluated in this research: the Bhattacharyya, Mahalanobis, 

and Hellinger 

In Chapter V, the specific implementation of the research is outlined.  

Specifically, we describe the simulated data generation, normalization, density 
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estimation, feature selection, and classification processes applied.  Finally, we discuss 

training and test set issues when applied to classifier problems. 

In Chapter VI, we present the results obtained with the various data sets 

considered.  The receiver operating characteristic curves, the correct classification rates, 

and the confidence intervals for each algorithm are shown.  The selected feature subsets 

are also shown as two-dimensional histograms and scatter plots in an effort to visually 

show the separability of the classes.   

In Chapter VII, we present conclusions and discuss topics for further research. 

The Appendix contains the MATLAB m-files and functions used in this research. 
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II. CLASSIFICATION 

In this chapter, we review the concept of data classification and describe how 

statistical confidence intervals and receiver operating characteristic curves are used in 

classification applications. 

A. CLASSIFICATION USING BAYES DECISION THEORY 

In classification, the statistical variation of the training vectors and noise from the 

sensors used in feature extraction force decisions to be made based on the probabilities of 

the data.  Adopting this reasoning forces the task of classification to be one of placing a 

test sample into the most probable class.  Given N classes ( ω1,ω2,…,ωM) and a feature 

vector X corresponding to an unknown class, the N conditional probabilities are 

expressed as: 

 ( | ), 1,2,..., .iP X i N   (1) 

In this research, and in the following section, only the binary hypothesis case (two 

classes) is analyzed.  The problem to be evaluated here is one in which a system 

generates multiple observations corresponding to one of two hypotheses, H0 or H1.  Each 

observation maps to a point in multidimensional feature space, which is the space that 

corresponds to a set of M observations denoted by the observation vector X, expressed as:  

 

1

2

M

x

x
X

x

 
 
 
 
 
 

. (2) 

By definition, observation corresponds to one of the two classes, and the classifier 

must make the choice between the two.  Each time an observation or feature vector is 

classified, one of four possible events can occur: (1) H0 is the truth and the feature vector 

is declared H0, (2) H0 is the truth and the feature vector is declared H1, (3) H1 is the truth 

and the feature vector is declared H1, (4) and H1 is the truth and the feature vector is 

declared H0.  The first and third outcomes correspond to correct classification.  The 

second and fourth outcomes correspond to classification errors.  The purpose of a 
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decision criterion is to assign relative importance to the four possibilities.  The Bayes test 

assumes that the prior probabilities (priors) for the hypotheses and the costs associated 

with the four outcomes are known.  The priors, P(H0) and P(H1), represent information 

available to the recognition system prior to any experimentation.  The costs for the four 

possible outcomes are given by C00, C10, C11, and C01, where Cij is the cost of deciding Hi 

when Hj is the truth.  Once the costs have been assigned, the decision rule is based on 

minimizing the expected cost, known as the Bayes risk , and shown as [5]:  

 
1 1

0 0

( | ) ( ).ij i j j

i j

C P H H P H
 

  (3) 

It is assumed throughout this section that the cost of an incorrect decision is 

higher than the cost of a correct decision.  In terms of C, C10> C00 and C01> C11.  Given 

this assumption, the detector that minimizes the Bayes risk is given by: 

 
1

0

0 10 001

0 1 01 11

( )( )( | )

( | ) ( )( )

H

H

P H C Cf X H

f X H P H C C




, (4) 

where the ratio of the conditional probabilities on the left-hand side of the equation is 

called the likelihood ratio.  The likelihood ratio is denoted by Λ(x) and is expressed as:  

 1

0

( | )
( ) .

( | )

f X H
x

f X H
   (5) 

A very important result of the likelihood ratio is that, regardless of the 

dimensionality of the observation X, the ratio is a scalar value.  This idea is critical in 

hypothesis testing.  This means that regardless of the observation feature space 

dimension, the decision space is one-dimensional.  The right-hand side of the inequality 

above is the test threshold and is denoted as: 

 0 10 00

1 01 11

( )( )

( )( )

P H C C

P H C C





, (6) 

where η is the threshold value.  The previous assumptions and equations present the 

Bayes criterion as a likelihood ratio test, shown as: 

 
1

0

( ) .
H

H

X   (7) 
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Since the threshold value depends on the priors and the weights assigned to the 

costs, the designer has flexibility in choosing a threshold that is best for the recognition 

problem at hand.  The next step in the design is to evaluate the classifier performance 

using the probability of correct classification PCC.  For this research, it is assumed that a 

correct classification is assigned zero cost (C00= C11=0) and an incorrect classification is 

assigned full cost (C01= C10=1).  With this assumption, and understanding that the sum of 

the probability of error PE and the PCC is one, the probability of correct classification is 

defined as: 

 
1 1 1 0 0 0( | ) ( ) ( | ) ( )CCP P H H P H P H H P H  . (8) 

The probability of correct classification is a very important performance measure.  

In this research, it is assumed that the two classes have an equal probability of 

occurrence, so that P(H0) = P(H1) = 0.5.  The previous assumptions are common in 

pattern recognition because there is often an insufficient amount of information about an 

experiment to allow assignment of priors and costs.  From these assumptions, the 

probability of correct classification becomes: 

  1 1 0 0

1
( | ) ( | )

2
CCP P H H P H H  . (9) 

Another method of evaluation for the classifier is to determine the probabilities of 

detection PD and false alarm PFA.  These probabilities are defined in the confusion matrix 

or contingency table shown in Figure 2. 

 

Figure 2.   Confusion Matrix for a two-class classification problem. From [6]. 
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From the confusion matrix, the probability of correct classification can now be 

expressed in terms of the probability of detection and the probability of false alarm, 

shown as: 

  
1

(1 )
2

CC D FAP P P   . (10) 

Figure 3 is an example of a two-class classification problem.  The red line 

displayed is the chosen threshold, η.   

 

Figure 3.   A two-class PDF classification problem for the one-dimensional feature 

vector case. 

The portion of the conditional probability f(x|H0) to the left of the threshold is 

classified as H0.  The portion of the conditional probability f(x|H1) to the right of the 

threshold is classified as H1.  There is a small portion of the f(x|H0) PDF that is to the 

right of the threshold.  This area would be incorrectly classified as H1.  From the 

confusion matrix, this error is a false alarm.  Conversely, the portion of the f(x|H1) PDF 

to the left of the threshold would be incorrectly classified, known as the miss error from 

the confusion matrix. 

B. STATISTICAL CONFIDENCE INTERVAL ON THE PROBABILITY OF 

CORRECT CLASSIFICATION 

After estimating the PCC, it is important to estimate the confidence with which the 

system can specify the performance of the classifier.  In order to do this, the confidence 

interval for the probability of correct classification is estimated [7].  In the process of 

evaluating the classifier‟s performance, the conditional probabilities are estimated based 
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upon experiments with the data.  The classifier declares each feature vector as belonging 

to one of two classes, giving either a success or failure.  Success simply means the 

classification was correct, while failure means it was incorrect.  If N equals the number of 

test feature vectors and p̂ denotes the probability of success ( p̂ =PCC), the maximum 

likelihood estimate of the probability of success is expressed as: 

 
Number of Correct Classifications

p̂
N

 . (11) 

The confidence interval about the true value of PCC is expressed as: 

 ( ) 1CCP L P U      (12) 

where α is the significance of the test and L and U are the lower and upper bounds, 

respectively, of the confidence interval.  Equation 12 simply reads that with confidence 

(1−α), the true PCC lies between the lower and upper bounds.  In this research, α was set 

to 0.05, providing a 95% confidence interval.  In order to determine the lower and upper 

bounds, the binominal approximation to the distribution of PCC was used because it offers 

more accurate results in comparison to the Gaussian assumption [8].  The estimates of the 

bounds are given by [9]:  

 
ˆ ˆ ˆ2 2 (1 ) 1

4

Np Np p
L

N

   



 (13) 

and
 

 
ˆ ˆ ˆ2 2 (1 ) 1

4

Np Np p
U

N

   



. (14) 

These expressions demonstrate the importance of having a large amount of test 

data.  As the number of test vectors increases, the confidence interval becomes smaller, 

providing more accurate results.  In Figure 4, the shrinking of the interval as N is 

increased is demonstrated [6]. 
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Figure 4.   95% confidence interval for various data set sizes.  The „x‟ axis corresponds 

to the maximum correct classification rate and the „y‟ axis corresponds to the 95% 

confidence interval bounds.  

C. RECEIVER OPERATING CHARACTERISTIC CURVE 

From the previous discussion concerning classification, the next step in evaluating 

the classifier‟s performance is to look at its receiver operating characteristic (ROC) 

curve.   

 

Figure 5.   Example of a family of ROC curves. Curves bend towards the upper left 

corner as the class separation increases. 
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When the two class PDFs overlap exactly, then the PD and PFA are equal over a 

range of thresholds, corresponding to the 45° straight line in Figure 5.  As the two 

distributions move apart, the ROC curve over the range of thresholds shifts away from 

the straight line.  This shifting of the ROC curve is the desired effect.  The larger the area 

between the curve and the straight line, the better the classifier performs.  The ROC curve 

generation is another vital evaluation of the classifier, and is used in this research to show 

the performance of the feature selection algorithms with the various class separability 

measures. 

 In this chapter, the classification process was thoroughly described, which 

included a discussion of the Bayes decision theory and the concepts of statistical 

confidence intervals and the receiver operating characteristic curve.  In the next chapter, 

the PDF estimation process is explained. 
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III. DENSITY ESTIMATION 

The histogram computed for data samples provides the simplest approach to 

estimate a probability density function f(x).  However, while it is effective, the histogram 

approach does not provide the best estimate of the probability density function.  In this 

chapter, we present a kernel density estimator approach designed to provide a more 

accurate estimate of the PDF than that obtained with the histogram. 

A.  PARZEN KERNEL PDF ESTIMATION  

The kernel density estimator (KDE) PDF estimate is much more sophisticated 

than the histogram estimate.  The Parzen kernel estimator was used in this research 

because of its generality, ease of use, and robustness as demonstrated by a wide variety of 

applications in [10]–[13]. The Parzen kernel PDF estimator is the basis for the 

Probabilistic Neural Network [14].  The PNN is actually a Bayes optimal classifier, 

which uses PDF estimates based upon the Parzen kernel.  The most commonly used 

kernel is the normal or Gaussian kernel.  The Parzen Gaussian kernel PDF estimator is 

given by: 

 
2

12

( ) ( )1
( ) exp

2
(2 )

TM
i i

p
ip

X X X X
f X


 



   
  

 
 , (15) 

where the parameters are: 

 i = Training vector index for vector under test over the range [1, M], 

 M =Number of training vectors in the training set, 

 X = Training feature vector (X = [x1,x2,..,xp]
T
), 

σ = Smoothing parameter for the PDF estimator (chosen by Cain 

algorithm described below), 

 p = Dimension of the feature vector Xi from the training set. 

From Equation 15, both training set PDF estimates can be generated, one corresponding 

to each class. 
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The width of the Gaussian kernel is specified by the smoothing parameter σ, 

which is the standard deviation of the kernel.  The PDF estimate is simply the summation 

of all the kernels over the entire training data set consisting of M samples.  The 

smoothing parameter choice directly affects the quality of the PDF estimate.  When the 

smoothing parameter is too small, the PDF estimate contains distinct modes and appears 

rough.  Conversely, when the smoothing parameter is selected to be too large, the PDF 

estimate is unable to capture fine structure.   

1. Density Estimation for Test Sets 

In order to properly estimate the conditional probabilities for each test vector for 

classification purposes, the vector must be evaluated using the KDE previously 

explained.  The training set PDF estimates are generated over a grid of values while the 

test set conditional probability estimates are generated for each test vector point.  The 

conditional probability for a test vector Xi given it is of class H0 is expressed as: 

 
0

0, 0,
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   
  

  
 , (16) 

where the parameters are: 

 i = Test vector index for vector under test over the range [1, M], 

 j = Training vector index over the range [1, NH0], 

 M =Number of test vectors in the test set, 

 NH0 = Number of training vectors in the training set H0, 

 Xi = Test feature vector (X = [x1,x2,..,xp]
T
), 

 XH0,j = Training feature vectors for class H0, 

σ = Smoothing parameter for the PDF estimator (chosen by Cain 

algorithm described below), 

p = Dimension of the feature vector Xi from the training set. 

The same process is used to generate the conditional probabilities for each test point 

given it is of class H1.  These conditional values are then used in the likelihood ratio. 
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B. SMOOTHING PARAMETER SELECTION 

Optimum smoothing parameter selection is typically a task requiring trial and 

error with multiple refinements and lots of time.  Despite this drawback, several 

algorithms and techniques exist for selecting the parameter automatically.  This research 

used the approach proposed by J. B. Cain, which provides a reasonable estimate of the 

smoothing parameter for a given training dataset [15].  The Cain algorithm was originally 

intended for use with the PNN, which is a Bayes classifier, utilizing the PDF estimates 

from a Parzen PDF estimator.  Cain‟s algorithm is based upon the observation that the 

PDF estimate at any point should be significantly influenced by more than one training 

vector but not by a large number of vectors.  It is clear that the larger the number of 

training vectors used and the more densely distributed these vectors are, the smaller the 

smoothing parameter must be for quality performance in the PDF estimation.  In this 

algorithm, σ is proportional to the average distance between the training vectors within 

the same class.  If i denotes the training vector index, pi denotes the i-th training vector, 

and |Ck| denotes the number of training vectors within the class, the distance between 

training vectors di is expressed as: 

 
1ˆ .

i

avg i

pk

d d
C

   (17) 

Finally, the smoothing parameter is assigned to be: 

 ˆ
avggd  , (18) 

where g is in the range (1.1 ≤ g ≤ 1.4), which was determined empirically by Cain and 

found to be useful in a variety of applications [15]. 

This chapter presented the kernel density estimator designed to estimate the PDF 

of discrete samples used in this work. In the next chapter, the feature selection methods 

used in this work are thoroughly explained. 
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IV. FEATURE SELECTION  

In this chapter, we introduce the concepts of feature selection and the three 

commonly used algorithms considered in the research: the exhaustive search, the branch 

and bound method, and the sequential forward selection method.  Next, we explain the 

three divergence measures considered in this research: Bhattacharyya, Mahalanobis, and 

Hellinger distance measures. 

A. FEATURE SELECTION ALGORITHMS 

In an effort to mitigate the “curse of dimensionality,” many pattern recognition 

systems rely on feature selection to reduce the amount of information required to define 

classes and to be used to classify new sets of data.  This research evaluates the 

performance of three common feature selection algorithms with the three class 

separability measures presented. 

1. Exhaustive Search 

The Exhaustive Search algorithm is a feature selection method in which all 

possible combinations of the desired size feature vector are enumerated, evaluated, and 

compared.  The combination that provides the greatest amount of class separability is the 

chosen feature subset vector.  This method is by far the most computationally intensive 

selection algorithm.  Given the number of available features n and the number of features 

to be used in the subset k the number of combinations to be evaluated is expressed as:  

 
!

No. of Combinations .
!( )!

n n

k k n k

 
  

 
 (19) 

2. Branch and Bound 

The Branch and Bound (B&B) algorithm is a much faster alternative to the 

Exhaustive Search and can also provide the globally optimal feature subset without 

exploring every possible combination when used in conjunction with a monotonic 

criterion function.  The worst case B&B scenario is that it may require the same number 

of computations as the Exhaustive Search does, but this case is very rare.  B&B avoids 
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evaluating all feature combinations by rejecting suboptimal subsets without direct 

evaluation and guarantees that the selected subset yields the globally optimal solution 

when the selection criterion satisfies the monotonicity condition:  

 
1 1 2 1 2 1 2( ) ( , ) ... ( , ,..., ),m mJ x J x x J x x x   (20) 

where
1 2( , ,..., )i iJ x x x is the criterion function evaluated for all features 

1 2, ,..., ix x x  from 

the feature set.  This restriction simply implies the resultant criterion value should 

increase as the number of features used increases (i.e., is monotonically increasing).  The 

Branch and Bound algorithm used in this research can be found in [16].  In this 

algorithm, the number of available features is defined as n.  The goal is to select the best 

subset of m features so that the class separability measure is optimized over all subsets of 

size m.  The algorithm starts with the full set of features, and as it branches down each 

level, a feature is discarded, as shown in Figure 6 [16].  The criterion function is 

evaluated at each node and compared to the current bound value.  The first bound value is 

the value of the criterion function for the node at the bottom-right side of the solution 

tree.  After this bound is established, if a node higher in the solution tree provides a 

distance measure less than the bound, the solutions stemming from that node do not 

require evaluation and can be disregarded. This characteristic of avoiding evaluation of 

all possibilities is what makes B&B a much more feasible approach as compared to the 

Exhaustive Search.   
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Figure 6.   An example of a solution tree for the best two features for the Branch and 

Bound algorithm with six available features. From [16]. 

3. Sequential Forward Selection 

The Sequential Forward Selection (SFS) algorithm requires that each feature be 

ranked according to its contribution to class separability.  SFS uses a bottom-up search 

strategy to obtain the final feature subset.  The same ranking scheme is used for 

Sequential Backward Selection (SBS), but the SBS algorithm uses a top-down approach.  

Features are either added to or removed from the current set based on the measured 

increase or decrease in class separability.  These algorithms cannot guarantee optimality 

because the selection or discarding of features is done on a scalar basis, meaning each 

feature is evaluated individually.  The best overall subset combination does not 

necessarily contain the top individual features of a data set.  The SFS uses a bottom-up 

search strategy, in which the starting set is the null set of features. One feature at a time is 

included in the current feature set.   

For SFS, we first specify a priori the number of features b desired in the final 

feature set. At each stage in the algorithm, one feature is added to the current feature set. 
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The new feature is selected from the set of features not already in the current feature set. 

For a new feature to be included, the new enlarged feature set must yield the maximum 

value of the criterion function.  

B. CLASS SEPARABILITY MEASURES 

For a distance measure to be employed in a feature selection algorithm, it is 

desirable that the measure possess the following four mathematical properties of a metric.  

If [ ( ), ( )]d f x g x  denotes the distance between two PDFs f(x) and g(x), the four properties 

are: 

(1) Identity:  [ ( ), ( )]d f x g x  = 0 if f(x)=g(x).  The distance between two 

identical objects should be zero. 

(2) Non-Negativity: [ ( ), ( )]d f x g x  ≥ 0. To conform to traditional concepts of 

distance, the distance should be non-negative.  

(3) Symmetry: [ ( ), ( )]d f x g x  = [ ( ), ( )]d g x f x . The distance between f(x) and 

g(x) is the same as the distance from g(x) to f(x). 

(4) Triangle Inequality: [ ( ), ( )]d f x h x  ≤ [ ( ), ( )]d f x g x  + [ ( ), ( )]d g x h x .  

A distance should obey the property that the distance between f(x) and g(x) plus 

the distance between g(x) and h(x) should be less than or equal to the distance between 

f(x) and h(x).  This allows the distances among objects to be compared easily and 

reinforces the traditional concept of distance. 

1. Divergence 

Many class separability measures are forms of a divergence distance measure.  

These criteria measure the separation between two probability density functions f(x) and 

g(x). Various divergence measures are defined in terms of the likelihood ratio of the two 

densities, such as: 

 
( )

.
( )

g x

f x
   (21) 
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The Mahalanobis distance measure is a divergence measure that assumes that 

both class PDFs are Gaussian distributed.  Common implementation of the Bhattacharyya 

distance utilizes the Gaussian assumption in an effort to avoid PDF estimation.  The 

Hellinger distance is also a divergence measure but does not require the Gaussian 

assumption. 

a. The Bhattacharyya Distance 

In terms of the associated class PDFs, the Bhattacharyya distance is 

expressed as: 

 ( , ) ( ) ( )
x

B f g f x g x dx  . (22) 

where f(x) and g(x) are the two class PDFs and B is the Bhattacharyya distance.  The 

Bhattacharyya distance measure for Gaussian data is expressed as:  
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 (23) 

where i and j represent the two different classes, µ is the corresponding class mean 

vector, Σ is the corresponding covariance matrix, and B is the Bhattacharyya distance 

The Bhattacharyya distance satisfies the identity, non-negativity, and symmetry 

properties of a distance measure, but it does not obey the triangle inequality.   The 

relationship between Equations 21 and 23 is explored in [17]. 

b. The Mahalanobis Distance 

The Mahalanobis distance measure is very similar to the Bhattacharyya 

distance.  The Mahalanobis distance for Gaussian data is expressed as:  

 
1( ) ( )T

i j i jM         (24) 

where i and j again represent the two different classes, µ is the corresponding class mean 

vector, Σ is the average of the two class covariance matrices, and M is the Mahalanobis 

distance.   
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c. The Hellinger Distance 

The squared Hellinger distance is defined as [4]: 

 2 21
( , ) [ ( ) ( )] ,

2
x

H f g f x g x dx   (25) 

where f(x) and g(x) are the two class PDFs and H is the Hellinger distance.  Moving the 

square root to the right-hand side of the equation, we get the Hellinger distance as:  

 21
( , ) [ ( ) ( )] .

2 x

H f g f x g x dx   (26) 

The Hellinger distance satisfies all four properties of a metric, and its 

range is [0,1].  This makes it an ideal candidate for use in estimation, feature selection, 

and classification.  The robustness of minimum Hellinger distance methods has been 

explored in [4]. In order to use the Hellinger distance for feature selection, it must be 

written for discrete variables and in vector form since the feature selection algorithms 

require operation on multidimensional PDFs.  The scalar Hellinger distance for discrete 

variables is given by: 

 
1

2

0

1
( , ) [ ( ) ( )]

2

K

k k

k

H f g f x g x dx




  , (27) 

where k is the discrete index over the range k=[0, K-1] and K is the integer number of 

measured samples of xk.  In order to compute the Hellinger distance between two 

multivariate PDFs, this equation must be extended to the vector or multidimensional case. 

Here, the PDFs are shown as f(X) and g(X).  The vector X is now an N by 1 feature vector 

containing N features.  There are M measured training feature vectors such that Xm, m= 

(1,M).  With this notion, the multivariate Hellinger distance is given by:  

 2

1

1
( , ) [ ( ) ( )] .

2

M

m m

m

H f g f X g X dX


   (28) 

 

The concepts of feature selection and class separability measures were 

reviewed in this chapter.  The specific feature selection algorithms and class separability 

measures used in this research were also described.  In the next chapter, the specific 
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implementation of this research is outlined.  This includes discussions of the data 

generation, PDF estimation, normalization, feature selection, and classification processes 

used in this research. 
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V. EXPERIMENTAL SETUP 

Experiments and tests conducted in this research required the generation of 

multivariate data sets, multidimensional PDF estimation, coding of feature selection 

algorithms and distance measures, and the classification and evaluation of the data and 

algorithms used.  All simulations were conducted using MATLAB and are described in 

this chapter. 

A. DATA SIMULATION 

The first step in evaluating the Hellinger distance feature selection algorithms was 

to generate multivariate data to be used as target class data for H0 and H1.  The 

observation data were generated using a normally distributed multivariate number 

generator in MATLAB.  The generators require the mean vectors, covariance matrices, 

and number of points for each data set to be generated.  For this research, the means and 

covariance matrix values were selected randomly over the range [0, 14]. Covariance 

matrices were constructed as diagonal matrices to ensure they were positive semi-

definite.  Finally, two Gaussian distributions were combined to generate a non-Gaussian 

distribution, as depicted in Figure 7. 

 

Figure 7.   Combination of two one-dimensional Gaussian distributions to provide a non-

Gaussian probability density. 

As a result of creating non-Gaussian data in this manner, the features in a class may 

become correlated.  This result does not affect the performance of any algorithm.   

The structure for the observed data is the same regardless of distribution.  Each 

row represents a measured feature vector containing N features, meaning each column 
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represents a measured value for each feature. For example, if the data set generated is of 

size 1000 by 8, this means there are 1000 different feature vectors each containing eight 

features.  The structure for the observed data generated is shown in Figure 8. 
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Figure 8.   The data structure for each class generated using the multivariate distribution 

generator in MATLAB is shown. 

The two simulated data sets for the two classes are then used to evaluate the 

performance of the various feature selection algorithms.  Before any PDF estimates or 

distances are computed, the class data were first normalized on the interval [−1, 1].  The 

data were normalized by feature for both classes.  For example, looking at Figure 8, the 

“Feature 1” column would be normalized based on that individual column‟s minimum 

and maximum values.  The same is done for all N columns of both classes. Normalizing 

the data ensures that features with larger values do not dominate the selection algorithms 

and also simplifies the grid building process for the density estimation. 

B. DENSITY ESTIMATION 

The Bhattacharyya and Mahalanobis distance measures both assume that the 

classes are Gaussian distributed, removing the need to compute an estimate of the PDF.  

Since the Hellinger distance does not assume Gaussianity, it requires an estimate of the 

PDF to compute the distance.  As discussed in Chapter II, the PDF estimation method 

used in this research is the Parzen kernel density estimator.   

First, the training data sets are reshaped to include only the features in each class 

being evaluated.  For example, if a PDF estimate is needed for features two and three of 

each class, the other feature columns are stripped away, leaving only an M by 2 feature 

matrix for each class.   
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The next step requires determining a feature grid over which to compute the PDF 

estimates.  This is done to ensure that, over the given range of the data, an estimate of the 

PDF is computed for each point in the grid, not just for each observation of the feature 

matrix.  The training data PDF estimates are computed over the same grid of values to 

ensure each point in both estimates has a value to allow for evaluation of the Hellinger 

distance.  Such a task requires the user to specify a grid scale factor.  The grid scale factor 

is used to extend the PDF estimate beyond the minimum and maximum values of the data 

set in an effort to estimate the “tails” of the PDF.  An example illustrating this step is 

demonstrated in Figure 9. 

 

Figure 9.   Use of the grid scale factor in estimating the PDF tails for the one-

dimensional case. 

The user is also required to specify the sampling interval dX along each 

dimension of the PDF estimate.  This value, along with the grid scale factor and the 

minimum and maximum values of the data, are used to determine the grid of points to be 

used in the PDF estimate.  For example, after normalization, the class minimum and 

maximum values are −1 and 1, respectively.  If the grid scale factor is specified as 1.5 

and the sampling interval is set to 0.1, the grid range is [−1.5, 1.5] and has points evenly 

spaced by 0.1 throughout the range. 

The last step in computing the PDF estimate is to pass the proper reshaped 

training sets to a function that computes the PDF estimate for each point on the grid given 
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the training set for that specific class.  This function requires the use of a smoothing 

parameter σ discussed in Chapter II.  The result from this function is an estimate of the 

class PDF given a specific feature subset.   

C. FEATURE SELECTION ALGORITHMS 

The various feature selection algorithms to be evaluated are the Exhaustive 

Search, Branch and Bound, and Sequential Forward Selection.  The details and 

explanations for each of these algorithms are given in Chapter IV.  Each feature selection 

algorithm is used with each of the three class separability measures (Mahalanobis, 

Bhattacharyya, and Hellinger) for comparison purposes.  Each algorithm requires the user 

to specify the desired number of features in the final feature vector subset.  The output for 

each of these functions is simply the best combination of features from the available set. 

After the algorithm has determined the best subset of features, the training and 

test sets must be transformed into “final” training and test sets.  This requires each feature 

that is not selected during feature selection to be discarded from every training and test 

vector for each class.  For example, if eight features were available and the feature 

selection algorithm selected feature columns two and four, columns one, three, five, six, 

seven, and eight would be removed from the sets, creating M by 2 matrices for each class 

of training and test vectors.  The last step is to add two columns to the test data.  The next 

to last column is the truth column, which contains information about the class to which 

the vector truly belongs (one for H0 and two for H1).  The last column is left blank and is 

used to hold the declaration or classification decision.   These matrices are then passed to 

the Bayesian classifier for evaluation.   

D. CLASSIFICATION OF TEST DATA 

Once the final training and test sets have been created using only the selected 

subset of features, the test data can be classified.  The training set for each class, along 

with each test vector, are passed to the kernel density estimator (KDE) function to 

estimate the conditional probability density for each class.  These scalar values are then 

used to determine the likelihood ratio for each test feature vector.  As discussed in 

Chapter II, these ratios are then compared to a range of threshold values in order to 
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construct the ROC curve and to determine the optimum threshold.  The optimum 

threshold is that which provides the maximum correct classification rate.  The likelihood 

ratio values are compared to the threshold values, and a decision is made based on the 

inequality expression.  The decision is placed into the last column of the test data. Once 

every test vector has been classified, the decisions are compared to the truth.   From the 

previous example of two features in a final subset, features two and four, a possible test 

matrix output from the classifier is shown in Figure 10. 
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Figure 10.   Output test matrix example from the Bayes classifier. 

In this example, the classifier made one error, and the correct classification rate is 

4/5 or 80%.  The statistical confidence interval is then computed with the corresponding 

correct classification rate and the size of the test data. 

The setup and approach to this research experiment were explained in this 

chapter.  The data generation, density estimation, feature selection, and classification 

processes used specifically in this research were also explained.  In the next chapter, the 

results from the various test runs are presented and explained. 
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VI. RESULTS 

In order to test the algorithms presented in this thesis, several simulated datasets 

were generated and used.  The results from these algorithms are presented in this chapter, 

along with supporting details and conclusions. 

A. SIMULATED DATA 

1. Two Gaussian Distributed Target Classes 

The first test of the feature selection algorithm with two Gaussian target classes 

involved both classes having a combined 1,400 training vectors (700 per class) and 1,000 

test vectors (500 per class) with a total of eight available features.  The best two features 

were then selected among the available combinations of features.  The algorithm 

evaluated for this case was the exhaustive search method.  This algorithm was 

implemented three times on the set of data, once for each class separability measure 

discussed.  The distributions of each of the eight features in feature space for each of the 

two classes are shown in Figures 11 and 12.  The distributions were calculated after each 

generated data set was normalized as discussed in Chapter V. 
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Figure 11.   Feature distributions for each feature of H0 in feature space for a Gaussian 

distributed target class. 
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Figure 12.   Feature distributions for each feature of H1 in feature space for a Gaussian 

distributed target class. 

The first class separability measure used in the exhaustive search method was the 

Hellinger distance measure.  Since the Hellinger distance method requires the estimation 

of the class PDFs, the algorithm was given a Grid Scale Factor of 1.1 and a sampling 

interval dX of 0.1.  The grid scale factor was varied over a range of [1.1, 2.0] and did not 

affect the algorithm‟s results.  Similarly, the sampling interval was varied between 

0.0001 and 0.1 and this also did not affect the results.  With the data set described above, 

the Hellinger Exhaustive Search algorithm selected features three and five.  This 

information was then used to construct the final training and test vectors as discussed in 

the Chapter V. The two-dimensional histograms for each training set with only the 

selected features are shown in Figure 13. 
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Figure 13.   Two-dimensional histograms of the two classes with the selected subset of 

features, three and five, obtained using the exhaustive search with the Hellinger 

distance.  Top and bottom histograms are for H0 and H1, respectively. The 

diagram on the right defines the axes for the plot. 

The same data represented in Figure 13 is shown as a scatter plot in Figure 14.  

These two figures show the separability of the two class PDFs chosen by the Hellinger 

algorithm. 
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Figure 14.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 94.00% of the test data.  The ROC curve for this implementation is 

shown in Figure 15. 
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Figure 15.   ROC curve obtained with the exhaustive search method and the Hellinger 

distance for the two Gaussian distributed target classes using features three and 

five. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 16. 
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Figure 16.   95% confidence interval for the correct classification rate of 94.20% for the 

exhaustive search using the Hellinger distance results with a test set size of 1000 

vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 92.31% and an upper bound of 95.44%.  The same data set was then evaluated 

using the exhaustive search method with the Bhattacharyya distance measure as the 

selection criterion.  The Bhattacharyya exhaustive search selected a different subset of 

features: features one and three.  This information was then used to construct the final 

training and test vectors as discussed in Chapter V. The two-dimensional histograms of 

each training set with only the selected features are shown in Figure 17. 
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Figure 17.   Two-dimensional histograms of the two classes with the selected subset of 

features, one and three, obtained using the exhaustive search approach with the 

Bhattacharyya distance.  Top and bottom histograms are for H0 and H1, 

respectively.  The diagram on the right defines the axes for the plot. 

The same data represented in Figure 17 is shown as a scatter plot in Figure 18.  

These two figures show the separability of the two class PDFs chosen by the Hellinger 

algorithm. 
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Figure 18.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 96.9% of the test data.  The ROC curve for this implementation is 

shown in Figure 19. 
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Figure 19.   ROC curve obtained with the exhaustive search method and the Bhattacharyya 

distance for the two Gaussian distributed target classes using features one and 

three. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate (green 

line) are shown in Figure 20. 
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Figure 20.   95% confidence interval for the correct classification rate of 96.90% for the 

exhaustive search method and the Bhattacharyya distance results for a test set size 

of 1000 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 95.11% and an upper bound of 98.20%.  The same data set was then evaluated 

using the exhaustive search method with the Mahalanobis distance measure as the 

selection criterion.  The Mahalanobis algorithm selected the same subset of features as 

the Bhattacharyya algorithm, thereby providing the same correct classification rate.   

There is a small overlap in the confidence intervals between the Hellinger and the 

other distance measures, showing that there is not complete confidence that the 

Bhattacharyya or Mahalanobis measures consistently outperform the Hellinger measure.  

Results showed all measures selected a feature combination resulting in a similiar correct 

classification rate.  Since the feature distributions for both classes were Gaussian, and 

both the Bhattacharyya and Mahalanobis distance measures assume Gaussianity, it is 

expected that these algorithms will perform roughly equivalently.   
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2. One Gaussian Class and One Non-Gaussian Target Class 

The first test of the feature selection algorithm with one Gaussian and one non-

Gaussian target class involved both classes having a combined 1400 training vectors (700 

per class) and 1000 test vectors (500 per class) with a total of eight available features.  

The best two features were then selected among the available combinations of features.  

The algorithm evaluated for this case was the exhaustive search method.  This algorithm 

was implemented three times on the set of data, once for each class separability measure 

discussed.  The distributions of each feature in feature space for each of the classes are 

shown in Figures 21 and 22.  The distributions were calculated after each generated data 

set was normalized as discussed in Chapter V. 
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Figure 21.   Feature distributions for each feature of H0 in feature space for a Gaussian 

distributed target class. 
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Figure 22.   Feature distributions for each feature of H1 in feature space for a non-

Gaussian distributed target class. 

The first class separability measure used in the exhaustive search method was the 

Hellinger distance measure.  Since the Hellinger distance method requires the estimation 

of the class PDFs, the algorithm was given a grid scale factor of 1.1 and a sampling 

interval dX of 0.1.  The grid scale factor was varied over a range of [1.1, 2.0] and did not 

affect the algorithm‟s results.  Similarly, the sampling interval was varied between 

0.0001 and 0.1 and this also did not affect the results.  With the data set described above, 

the Hellinger Exhaustive Search algorithm selected features three and eight.  This 

information was then used to construct the final training and test vectors as discussed in 

the Chapter V. The two-dimensional histograms obtained for each training set with the 

selected features only are shown in Figure 23. 



 46 

 

Figure 23.   Two-dimensional histograms of the two classes with the selected subset of 

features, three and eight, obtained using the exhaustive search method and the 

Hellinger distance.  Top and bottom histograms are for H0 and H1, respectively. 

The diagram on the right defines the axes for the plot.  

The same data represented in Figure 23 is shown as a scatter plot in Figure 24.    

These two figures show the separability of the two class PDFs chosen by the Hellinger 

algorithm. 
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Figure 24.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 99.00% of the test data.  The ROC curve for this implementation is 

shown in Figure 25. 
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Figure 25.   ROC curve obtained with the exhaustive search method and the Hellinger 

distance for one Gaussian and one non-Gaussian distributed target class using 

features three and eight. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 26. 
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Figure 26.   95% confidence interval for the correct classification rate of 99.90% obtained 

for the exhaustive search and the Hellinger distance results for a test set size of 

1000 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 99.42% and an upper bound of 99.98%.   

The same data set was then evaluated using the exhaustive search method with the 

Bhattacharyya distance measure as the selection criterion.  The Bhattacharyya algorithm 

selected a different subset of features: features one and three.  This information was then 

used to construct the final training and test vectors as discussed in Chapter V. The two-

dimensional histograms of each training set with only the selected features are shown in 

Figure 27. 
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Figure 27.   Two-dimensional histograms of the two classes with the selected subset of 

features, one and three, obtained using the exhaustive search method and the 

Bhattacharyya distance.  Top and bottom histograms are for H0 and H1, 

respectively. The diagram on the right defines the axes for the plot. 

The same data represented in Figure 27 is shown as a scatter plot in Figure 28.  

These two figures show the separability of the two class PDFs chosen by the 

Bhattacharyya algorithm. 
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Figure 28.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 91.40% of the test data.  The ROC curve for this implementation is 

shown in Figure 29. 
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Figure 29.   ROC curve obtained with the exhaustive search method and the Bhattacharyya 

distance for one Gaussian and one non-Gaussian distributed target class using 

features one and three. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data, given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 30. 
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Figure 30.   95% confidence interval for the correct classification rate of 91.40% obtained 

for the exhaustive search method and the Bhattacharyya distance results for a test 

set size of 1000 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 89.46% and an upper bound of 93.01%.  As expected, the Hellinger distance 

performed better than the Bhattacharyya distance for these data sets. The same data set 

was then evaluated using the exhaustive search method with the Mahalanobis distance 

measure as the selection criterion.  The Mahalanobis algorithm selected the same subset 

of features as the Hellinger algorithm, thereby providing the same correct classification 

rate.  

These data sets were then used with the SFS algorithm for each of the three 

separability measures.  The Hellinger and Bhattacharyya distances both selected the same 

subset of features while the Mahalanobis SFS algorithm selected a different subset 

consisting of features one and three.  These features are the same as those selected by the 

Bhattacharyya algorithms and constitute degradation in quality from the Mahalanobis 
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exhaustive search results.  This is explained simply from the fact the SFS algorithm is not 

an optimal search technique and does not guarantee the optimal solution.   

3. Two Non-Gaussian Distributed Target Classes 

The first test of the feature selection algorithm with two non-Gaussian target 

classes involved both classes having a combined 940 training vectors (470 per class) and 

640 test vectors (320 per class) with a total of eight available features.  The best two 

features were then selected among the available combinations of features.  The first 

algorithm evaluated was the exhaustive search method.  This algorithm was implemented 

three times on the set of data, once for each class separability measure discussed.  The 

distributions of each feature in feature space for each of the classes are shown in Figures 

31 and 32.  The distributions were calculated after each generated data set was 

normalized, as discussed in Chapter V. 
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Figure 31.   Feature distributions for each feature of H0 in feature space for a non-

Gaussian distributed target class. 
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Figure 32.   Feature distributions for each feature of H1 in feature space for a non-

Gaussian distributed target class. 

The first class separability measure used in the exhaustive search method was the 

Hellinger distance measure.  Since the Hellinger distance method requires the estimation 

of the class PDFs, the algorithm was given a Grid Scale Factor of 1.1 and a sampling 

interval dX of 0.1.  The grid scale factor was varied over a range of [1.1, 2.0] and did not 

affect the algorithm‟s results.  Similarly, the sampling interval was varied between 

0.0001 and 0.1 and this also did not affect the results.  With the data set described above, 

the Hellinger Exhaustive Search algorithm selected features three and five.  This 

information was then used to construct the final training and test vectors as discussed in 

Chapter V. The two-dimensional histograms for each training set, with only the selected 

features, are shown in Figure 33. 
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Figure 33.   Two-dimensional histograms of the two classes with the selected subset of 

features, three and five, obtained with the exhaustive search method and the 

Hellinger distance.  Top and bottom histograms are for H0 and H1, respectively.  

The diagram on the right defines the axes for the plot. 

The same data represented in Figure 33 is shown as a scatter plot in Figure 34.    

These two figures show the separability of the two class PDFs chosen by the Hellinger 

algorithm. 
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Figure 34.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 93.6% of the test data.  The ROC curve for this implementation is 

shown in Figure 35. 
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Figure 35.   ROC curve obtained with the exhaustive search method and the Hellinger 

distance for the two non-Gaussian distributed target classes using features three 

and five. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 36. 
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Figure 36.   95% confidence interval for the correct classification rate of 93.6% obtained 

for the exhaustive search method using the Hellinger distance results for a test set 

size of 640 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 91.37% and an upper bound of 95.27%.  The same data set was then evaluated 

using the exhaustive search method with the Bhattacharyya distance measure as the 

selection criterion.  The Bhattacharyya algorithm selected a different subset of features: 

features five and seven.  This information was then used to construct the final training 

and test vectors as discussed in Chapter V. The two-dimensional histograms of each 

training set, with only the selected features, are shown in Figure 37. 
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Figure 37.   Two-dimensional histograms of the two classes with the selected subset of 

features, five and seven, obtained using the exhaustive search approach and the 

Bhattacharyya distance.  Top and bottom histograms are for H0 and H1, 

respectively.  The diagram on the right defines the axes for the plot. 

The same data represented in Figure 37 is shown as a scatter plot in Figure 38.    

These two figures show the separability of the two class PDFs chosen by the 

Bhattacharyya algorithm. 
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Figure 38.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 88.6% of the test data.  The ROC curve for this implementation is 

shown in Figure 39. 
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Figure 39.   ROC curve obtained with the exhaustive search method and the Bhattacharyya 

distance for the two non-Gaussian distributed target classes using features five 

and seven. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 40. 
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Figure 40.   95% confidence interval for the correct classification rate of 88.6% obtained 

for the exhaustive search method using the Bhattacharyya distance results for a 

test set size of 640. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 85.84% and an upper bound of 90.87%.  The same data set was then evaluated 

using the exhaustive search method with the Mahalanobis distance measure as the 

selection criterion.  The Mahalanobis algorithm selected a different subset of features: 

features three and four.   With this subset of features, the Bayes classifier provided a 

maximum correct classification rate of 58.9% of the test data.  The ROC curve for this 

implementation is shown in Figure 41. 
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Figure 41.   ROC curve obtained with the exhaustive search method and the Mahalanobis 

distance for the two non-Gaussian distributed target classes  

using features three and four. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 42. 
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Figure 42.   95% confidence interval for the correct classification rate of 58.9% for the 

exhaustive search using the Mahalanobis distance results with a test set size of 

640 vectors. 

The results of the Mahalanobis exhaustive search are not considered valid because 

many of the feature subset combinations provided singular or close to singular matrices 

during the distance measure evaluation.  The combination of two separate Gaussians 

caused the covariance matrix to be non-diagonal and ill-conditioned for the distance 

evaluation.  This is a result of the manner in which the data were generated, as discussed 

in Chapter V.  After all three separability measures were used in the algorithm, it was 

evident that the Hellinger distance was most capable of selecting the best non-Gaussian 

feature combination.  The confidence intervals obtained for the Bhattacharyya and 

Mahalanobis algorithms do not overlap with that obtained for the Hellinger, providing 

more confidence in these positive results.   

This data set was then used in the SFS algorithm with all three class separability 

measures.   The first distance measure evaluated was the Hellinger.  The SFS algorithm 

utilizing the Hellinger distance as the selection criterion yielded the same results as the 

exhaustive search with the Hellinger distance: features three and five.  The same feature 
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combination generated the same correct classification rate of 93.6%.  The SFS algorithm 

for the Bhattacharyya also selected the same feature subset as the exhaustive search: 

features five and seven.  The only distance measure that saw a change in the selected 

feature subset between the exhaustive search and the SFS was the Mahalanobis.  The 

Mahalanobis selected features five and seven, the same subset as the Bhattacharyya, 

yielding a correct classification rate of 88.6%.   

In an effort to better evaluate the algorithms and to test if a sufficient number of 

points were used, another set of non-Gaussian distributed target classes was generated.  

This trial contained a combined 1400 training vectors and 1000 test vectors with a total of 

eight available features.  The best two features were then selected among the available 

combinations of features.  The exhaustive search method was once again implemented 

with all three class separability measures.  The distributions of each feature in feature 

space for each of the classes are shown in Figures 43 and 44.  The distributions were 

calculated after each generated data set was normalized as discussed in Chapter V. 
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Figure 43.   Feature distributions for each feature of H0 in feature space  

for a non-Gaussian distributed target class. 
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Figure 44.   Feature distributions for each feature of H1 in feature space for a non-

Gaussian distributed target class. 

The first class separability measure used in the exhaustive search method was the 

Hellinger distance measure.  Since the Hellinger distance method requires the estimation 

of the class PDFs, the algorithm was given a Grid Scale Factor of 1.1 and a sampling 

interval dX of 0.1.  The grid scale factor was varied over a range of [1.1, 2.0] and did not 

affect the algorithm‟s results.  Similarly, the sampling interval was varied between 

0.0001 and 0.1 and this also did not affect the results.  With the data set described above, 

the Hellinger Exhaustive Search algorithm selected features one and five.  This 

information was then used to construct the final training and test vectors as discussed in 

the Experimental Setup chapter. The two-dimensional histograms obtained for each 

training set with only the selected features are shown in Figure 45. 
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Figure 45.   Two-dimensional histograms of the two classes with the selected subset of 

features, one and five, obtained with the exhaustive search method and the 

Hellinger distance.  Top and bottom histograms are for H0 and H1, respectively.  

The diagram on the right defines the axes for the plot. 

The same data represented in Figure 45 is shown as a scatter plot in Figure 46.   

These two figures show the separability of the two class PDFs chosen by the Hellinger 

exhaustive search algorithm. 
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Figure 46.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 95.1% of the test data.  The ROC curve for this implementation is 

shown in Figure 47. 
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Figure 47.   ROC curve obtained using the exhaustive search with the Hellinger distance 

for the two non-Gaussian distributed target classes using features one and five. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 48. 
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Figure 48.   95% confidence interval for the correct classification rate of 95.1% obtained 

for the exhaustive search method using the Hellinger distance results with a test 

set size of 1000 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 93.55% and an upper bound of 96.29%.  The same data set was then evaluated 

using the exhaustive search method with the Bhattacharyya distance measure as the 

selection criterion.  The Bhattacharyya algorithm selected a different subset of features: 

features one and six.  This information was then used to construct the final training and 

test vectors as discussed in Chapter V. The two-dimensional histograms for each training 

set with only the selected features are shown in Figure 49. 
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Figure 49.   Two-dimensional histograms of the two classes with the selected subset of 

features, one and six, obtained with the exhaustive search method and the 

Bhattacharyya distance. Top and bottom histograms are for H0 and H1, 

respectively.  The diagram on the right defines the axes for the plot. 

The same data represented in Figure 49 is shown as a scatter plot in Figure 50.    

These two figures show the separability of the two class PDFs chosen by the 

Bhattacharyya exhaustive search algorithm. 
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Figure 50.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 91.7% of the test data.  The ROC curve for this implementation is 

shown in Figure 51. 
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Figure 51.   ROC curve obtained with the exhaustive search method and the Bhattacharyya 

distance for the two non-Gaussian distributed target classes using features one and 

six. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 52. 
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Figure 52.   The 95% confidence interval for the correct classification rate of 91.7% with a 

test set size of 1000 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 89.78% and an upper bound of 93.28%.  The same data set was then evaluated 

using the exhaustive search method with the Mahalanobis distance measure as the 

selection criterion.  The Mahalanobis algorithm selected a different subset of features: 

features four and six.   With this subset of features, the Bayes classifier provided a 

maximum correct classification rate of 50.0% of the test data.  Just as before, these results 

are inconclusive due to the near singularity or near singularity of the matrices used during 

the distance measure evaluation.   

These results using a larger sample size provided another validation that the 

Hellinger algorithm chose the best feature subset among the possible feature 

combinations.  The confidence intervals do not overlap, and the increase in the correct 

classification rate is considered significant.   

This data set was then used in the SFS algorithm with all three class separability 

measures.   The first distance measure evaluated was the Hellinger.  The SFS algorithm 
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utilizing the Hellinger distance as the selection criterion yielded the same results as the 

exhaustive search with the Hellinger distance: features one and five.  The same feature 

combination generated the same correct classification rate of 95.1%.  The SFS algorithm 

for the Bhattacharyya also selected the same feature subset as the exhaustive search: 

features one and six.  The only distance measure that saw a change in the selected feature 

subset between the exhaustive search and the SFS was the Mahalanobis.  The 

Mahalanobis selected features one and six, the same subset as the Bhattacharyya, yielding 

a correct classification rate of 91.7%.   

In an effort to further validate these results, the simulated data distribution for 

each feature remained the same (mean vectors and covariance matrices) while the 

selected data points were regenerated.  The mean vectors and covariance matrices of each 

Gaussian in the summation remained constant for each of the following tests.  This 

essentially gives 1000 new test points as well as 1400 new training points for the same 

two classes.  These tests were run five times to verify the results were consistent.  The 

results are shown below. 

Table 1.   The resultant feature subsets and corresponding correct classification rates  

(PCC) for five simulations of generated data are shown in this table.  Each row 

represents a different simulation. 

Mahalanobis Bhattacharyya  Hellinger  

Features 

Selected 

Maximum 

Pcc 

Features 

Selected 

Maximum 

Pcc 

Features 

Selected 

Maximum 

Pcc 

[2  7] 96.5% [1  5] 81.0% [1  2] 99.5% 

[3  4] 72.9% [1  5] 81.4% [1  7] 98.9% 

[2  8] 73.1% [1  5] 83.0% [1  7] 99.2% 

[2  3] 74.2% [1  5] 85.6% [1  5] 85.6% 

[1  7] 98.9% [1  5] 79.3% [1  7] 98.9% 

 

The exhaustive search was the feature selection algorithm used in Table 1. Again, 

the Mahalanobis distance algorithm results are inconclusive because of the near 
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singularity in the data matrices during evaluation.  The Hellinger distance did not always 

pick the same feature subsets but consistently outperformed the other algorithms while 

never doing worse. 

The last algorithm to be evaluated was the Branch and Bound with each of the 

three separability measures.  The next set of tests was run on two simulated non-Gaussian 

target classes with five features instead of eight due to the need for the B&B to generate 

multiple three- and four-dimensional PDFs.  The results are shown below for the Branch 

and Bound, and the data were also run through the Exhaustive Search to determine if the 

selected features are the globally optimal subset given the respective separability 

measure.  This trial contained a combined 1400 training vectors (700 per class) and 1000 

test vectors (500 per class).  The best two features were selected among the available 

combinations of features.  The distributions of each feature in feature space for each of 

the classes are shown in Figures 53 and 54.  The distributions were calculated after each 

generated data set was normalized, as discussed in Chapter V. 
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Figure 53.   Feature distributions for each feature of H0 in feature space for a non-

Gaussian distributed target class. 
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Figure 54.   Feature distributions for each feature of H1 in feature space for a non-

Gaussian distributed target class. 

The first class separability measure used in the B&B method was the Hellinger 

distance measure.  Since the Hellinger distance method requires the estimation of the 

class PDFs, the algorithm was given a Grid Scale Factor of 1.1 and a sampling interval 

dX of 0.1.  The grid scale factor was varied over a range of [1.1, 2.0] and did not affect 

the algorithm‟s results.  Similarly, the sampling interval was varied between 0.0001 and 

0.1 and this also did not affect the results.  With the data set described above, the 

Hellinger branch and bound algorithm selected features three and four.  This information 

was then used to construct the final training and test vectors as discussed in Chapter V. 

The two-dimensional histograms obtained for each training set with only the selected 

features are shown in Figure 55. 
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Figure 55.   Two-dimensional histograms of the two classes with the selected subset of 

features, three and four, obtained using the B&B algorithm with the Hellinger 

distance.  Top and bottom histograms are for H0 and H1, respectively.  The 

diagram on the right defines the axes for the plot. 

The same data represented in Figure 55 is shown as a scatter plot in Figure 56.    

These two figures show the separability of the two class PDFs chosen by the Hellinger 

B&B algorithm. 
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Figure 56.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 98.2% of the test data.  The ROC curve for this implementation is 

shown in Figure 57. 
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Figure 57.   ROC curve obtained with the B&B algorithm and the Hellinger distance for 

the two non-Gaussian distributed target classes using features three and four. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 58. 
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Figure 58.   95% confidence interval for the correct classification rate of 98.2% for the 

B&B algorithm using the Hellinger distance results with a test set size of 1000 

vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 97.15% and an upper bound of 98.89%.  Since the B&B algorithm is a top-

down selection algorithm, it is important to note the order in which features are discarded 

and to evaluate the changes in the Hellinger distance throughout. The features were 

discarded in the order [1 5 2]. The change in the Hellinger distance as features are 

removed is shown in Figure 59.  
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Figure 59.   Changes in the Hellinger distance as features are removed from the available 

set. 

The same data set was then evaluated using the B&B method with the 

Bhattacharyya distance measure as the selection criterion.  The Bhattacharyya algorithm 

selected a different subset of features: features two and three.  This information was then 

used to construct the final training and test vectors as discussed in Chapter V. The two-

dimensional histograms for each training set with only the selected features are shown in 

Figure 60. 
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Figure 60.   Two-dimensional histograms of the two classes with the selected subset of 

features, two and three, obtained using the B&B algorithm with the Bhattacharyya 

distance.  Top and bottom histograms are for H0 and H1, respectively.  The 

diagram on the right defines the axes for the plot. 

The same data represented in Figure 60 is shown as a scatter plot in Figure 61.  

These two figures show the separability of the two class PDFs chosen by the 

Bhattacharyya B&B algorithm. 
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Figure 61.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 84.1% of the test data.  The ROC curve for this implementation is 

shown in Figure 62. 
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Figure 62.   ROC curve obtained using the B&B algorithm with the Bhattacharyya 

distance for the two non-Gaussian distributed target classes using features two 

and three. 

The next step in evaluating this algorithm‟s performance was to compute the 95% 

confidence interval for the test data given the set size and correct classification rate.  The 

confidence interval curves and the intersection with the correct classification rate are 

shown in Figure 63. 
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Figure 63.   95% confidence interval for the correct classification rate of 84.1% for the 

B&B algorithm using the Bhattacharyya distance results with a test set size of 

1000 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 81.65% and an upper bound of 86.28%.  Since B&B algorithm is a top-down 

selection algorithm, it is important to note the order in which features are discarded and 

to evaluate the changes in the Bhattacharyya distance throughout. The features were 

discarded in the order [4 5 1]. The change in the Bhattacharyya distance as features are 

removed is shown in Figure 64.  
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Figure 64.   Changes in the Bhattacharyya distances as features are removed from the 

available set. 

The same data set was then evaluated using the B&B method with the 

Mahalanobis distance measure as the selection criterion.  The Mahalanobis algorithm 

selected the same subset of features as the Bhattacharyya algorithm, giving the same 

correct classification rate of 84.1%. 

The exhaustive search algorithm, using each of the three class separability 

measures, provided the same results as the branch and bound data.  This was expected 

due to the fact that B&B and exhaustive search are both optimal search techniques.  

These results, like those for the exhaustive search and the SFS, show that the Hellinger 

was once again most capable of selecting the best feature subset among the available 

feature combinations. 

4. Summary  

For all of the tests conducted using various distributions of classes, the Hellinger 

distance algorithms performed equal to or better than the other distance measures.  There 

were several simulations performed where all algorithms selected the same subset of 

features.  The cases previously highlighted show the simulations where the Hellinger 
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algorithms performed best among the three distance measures.  These results bolster the 

notion that the removal of the Gaussian assumption from the feature selection process can 

greatly increase a recognition system‟s performance. 

B. REAL DATA 

In order to establish a benchmark test and create results that are comparable to 

other selection algorithms and criteria, it is necessary to test these algorithms with a 

commonly used set of classification data.  For this research, the Fisher Iris data set was 

used.  This data set consists of 50 measurements of three classes of iris flowers (Setosa, 

Virginica, and Versicolor).  There are four features corresponding to the length and width 

of the sepal and petal of an iris flower.  In order to continue the binary class case, only 

the data corresponding to the Virginica and Versicolor classes were used.  These classes 

were chosen because MATLAB offers a two-class classification problem example using 

these two classes.  Also, of the three classes, these two are non-linearly separable.  

After the two classes were formatted as discussed in Chapter V, the distributions 

of each feature for each class were computed.  For these simulations, the Versicolor and 

Virginica classes were the H0 and H1 classes, respectively.  The classes were first 

separated into training and tests sets.  The algorithms were trained with 60 percent of the 

available feature vectors, 30 vectors for each class and tested with 40 percent. The 

distributions for each of the classes of features are shown in Figures 65 and 66. 
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Figure 65.   Feature distributions for each feature of H0 in feature space for the Fisher iris 

data. 
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Figure 66.   Feature distributions for each feature of H1 in feature space for the Fisher iris 

data. 

In order to properly evaluate this data set using the feature selection and 

classification algorithms for this research, it was important to evaluate the different sizes 

of feature subsets.  After separating into training and test sets, the test data were classified 

using all four available features.  The Bayes classifier constructed for this research 

provided a maximum correct classification rate of 95.00% for the binary class case.  The 

ROC curve for this case is shown in Figure 67. 
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Figure 67.   ROC curve for the two Fisher iris target classes using all four available 

features. 

In order to further evaluate the classifier‟s performance, it is important to compute 

the 95% confidence interval given the correct classification rate of 95.00% and a test size 

of 40 vectors.  The confidence interval curves and the intersection with the correct 

classification rate are shown in Figure 68. 
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Figure 68.   95% confidence interval for the correct classification rate of 95.00% with a 

test set size of 40 vectors. 

The evaluation of the confidence interval with these parameters yielded a lower 

bound of 83.17% and an upper bound of 98.65%.  This interval is much larger than those 

for the simulated data sets due to the smaller number of test vectors.   

The first feature selection test performed on the two class Fisher iris data was an 

exhaustive search method to choose the best two features using the Hellinger distance as 

the selection criterion.  This algorithm selected features one and four.  This information 

was then used to construct the final training and test vectors as discussed in Chapter V. 

The two-dimensional histograms obtained for each training set with only the selected 

features are shown in Figure 69. 
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Figure 69.   Two-dimensional histograms of the two classes with the selected subset of 

features, one and four, obtained using the exhaustive search method and the 

Hellinger distance.  Top and bottom histograms are for H0 and H1, respectively.  

The diagram on the right defines the axes for the plot. 

The same data represented in Figure 69 (above) is shown as a scatter plot in 

Figure 70.  These two figures show the separability of the two class PDFs chosen by the 

Hellinger algorithm. 
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Figure 70.   Scatter plot of the two-dimensional feature space for the two classes.  Blue 

and red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 95.00% of the test data.  The ROC curve for this implementation is 

shown in Figure 71. 
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Figure 71.   ROC curve obtained using the exhaustive search with the Hellinger distance 

for the two Fisher iris target classes using features one and four. 

The 95% confidence interval for this classification rate is the same as that for the 

full feature set shown in Figure 68.   

The same data set was then evaluated using the exhaustive search method with the 

Hellinger distance measure as the selection criterion in order to choose the best three 

feature subset.  The features chosen were features two, three, and four.  This subset was 

then used to classify the test data, and the maximum classification rate returned was 

97.50%.  The ROC curve for this implementation is shown in Figure 72. 
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Figure 72.   ROC curve obtained with the exhaustive search method and the Hellinger 

distance for the two Fisher iris target classes using features two, three, and four. 

The next feature selection test conducted on the two class Fisher iris data was the 

exhaustive search algorithm using the Bhattacharyya distance as the selection criterion.  

The best two feature subset provided by this algorithm was features one and three. The 

two-dimensional histograms obtained for each training set with only the selected features 

are shown in Figure 73. 
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Figure 73.   Two-dimensional histograms of the two classes with the selected subset of 

features, one and three, obtained with the exhaustive search method and the 

Bhattacharyya distance.  Top and bottom histograms are for H0 and H1, 

respectively.  The diagram on the right defines the axes for the plot. 

The scatter plot for the two classes in two-dimensional feature space is shown in 

Figure 74. 
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Figure 74.   Scatter plot of the two-dimensional feature space for the two classes. Blue and 

red dots correspond to the H0 and H1 training data, respectively. 

With this subset of features, the Bayes classifier provided a maximum correct 

classification rate of 95.00% of the test data.  The ROC curve for this implementation is 

shown in Figure 75. 
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Figure 75.   ROC curve obtained using the exhaustive search with the Bhattacharyya 

distance for the two Fisher iris target classes using features one and three is shown 

in this figure. 

The confidence interval for this correct classification rate is the same as that 

obtained for the classification using all four features.  The next test was to use the 

Bhattacharyya exhaustive search algorithm to determine the best three feature subset.  

The algorithm selected features one, three, and four.  The correct classification rate for 

this feature subset was 97.50%.  Despite picking a different subset of features, this subset 

provided the same correct classification rate and confidence interval.   

The same two-class Fisher iris data were then used with the Mahalanobis 

exhaustive search algorithm.  For the best two-feature subset, the algorithm selected 

features one and four, the same subset as the Hellinger algorithm, providing a correct 

classification rate of 95.00%.  For the best three-feature subset, the algorithm chose 

features one, two, and three, providing a correct classification rate of 95.00%.  This 

subset was the only three-feature subset to not show an increase in the correct 

classification rate.   
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The data were then used in the branch and bound algorithm with each of the three 

separability measures.  The two and three feature subsets chosen for each algorithm were 

the same as those selected by the exhaustive search.  This result is expected since both 

feature selection algorithms are optimal search techniques. 

Overall, the results presented in this chapter do indicate an improvement in an 

ATR system when the feature selection process utilizes the Hellinger distance.  In the 

next chapter, we present conclusions and discuss topics for further research. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

The application of the Hellinger distance measure to the feature selection process 

was examined in this thesis.  It began with an introduction to the concepts of feature 

selection, density estimation, and classification.  The objective, as stated in Chapter I, 

was to determine if the Hellinger distance measure was capable of creating larger class 

separability than that obtained with other separability measures for the non-Gaussian data 

case.  This hypothesis was upheld and validated by the results presented in this thesis. 

When non-Gaussian target classes were introduced into the feature selection 

process, a significant improvement in overall correct classification was obtained when the 

feature subsets were chosen by the Hellinger distance.  This was first presented in the 

case when one target class was Gaussian distributed and one class was non-Gaussian 

distributed.  The subset chosen by the Hellinger distance provided a 7.6% increase in 

correct classification.  Likewise, when both target classes were non-Gaussian distributed, 

the subset chosen by the Hellinger distance feature selection algorithm provided a 5.0% 

increase in correct classification.   

Feature selection is most useful when the number of available features is quite 

large.  In some instances, hundreds or thousands of features can be available.  It is cost 

and time inefficient to use most or all of these features.  The ability to reduce 

computational complexity, memory requirements, and time are all goals when choosing 

the best feature subset.   

One area of further research in this area would be to extend this algorithm to a 

larger feature size.  Due to the need to compute many multidimensional PDF estimates, 

this task will require efficient and creative coding techniques or a different PDF 

estimator.  The memory constraints on many standard computers are exceeded when the 

dimensionality of the estimate exceeds nine or ten dimensions.  This restriction forced 

this research to be limited to eight or fewer dimensions.  Despite the obstacles, the ability 

to extend this algorithm to larger feature sets would constitute an important contribution 

to the literature. 
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Another area for further research is density estimation.  The selection of the 

smoothing parameter is an important aspect of the density estimation process and 

improvements in this area could greatly improve the quality of the results.  Also, varying 

the chosen kernel from the Gaussian used in this research to another might prove 

beneficial.  An evaluation of the tradeoffs between estimate accuracy and complexity 

may also prove enlightening.  Another idea to pursue would be to generate non-Gaussian 

data that are well-conditioned and have diagonal covariance matrices.  This can be 

accomplished by using classical non-Gaussian distributions, such as the Rayleigh or 

uniform distributions. 
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APPENDIX 

This is the code written for the Branch and Bound algorithm using the Hellinger distance 

as the selection criterion. 
 
%%%%%%%%%%%%%%%%%%%%% 

%%% Wrapper for Branch and Bound Function v2 

%%% Used for the Hellinger Distance Feature Selection 

%%%%%%%%%%%%%%%%%%%%% 

%clear all 

%close all 

% load -MAT FEATURE_MATRICES_WILDER_FLIP 

% load -MAT FEATURE_MATRICES_WILDER 

%%% 

%  X0=X0_1;      % These are used for the FLIP Matrix 

%  X1=X1_1; 

X0=X0_BC; 

X1=X1_BC; 

s=size(X0); 

P=s(2); 

fprintf('Number of features in a full vector=  %6.2f\n',P) 

num_features=input('Enter the number of features you wish to select:') 

Grid_Scale_Factor=input('Enter Grid Scale Factor for the PDF estimate: ') 

dX=input('Enter the scalar value for the sampling along each dimension: ') 

[dist,best,discarded_features]=Branch_and_Bound_v2(X0,X1,num_features,Grid_Scale_Factor,d

X); 

dist 

best 

discarded_features 

Grid_Scale_Factor=1.1;dX=.1; 

[Grid,GridCell]=Grid_Builder_Auto_MJW_v3(X0_Train,X1_Train,Grid_Scale_Factor,dX); 

f_H0=KDE_MJW(X0,GridCell); 

f_H1=KDE_MJW(X1,GridCell); 

f_H0_Norm=Normalize_PDF(f_H0); 

f_H1_Norm=Normalize_PDF(f_H1); 

classdist=Hellinger_Distance_MJW(f_H0_Norm,f_H1_Norm,dX); 

fprintf('Class distance with all features is  %6.2f\n',classdist) 

b=size(X0);     

class1=X0; 

class2=X1;     

class1(:,discarded_features(1))=[]; 

class2(:,discarded_features(1))=[]; 

[Grid_New,GridCell_New]=Grid_Builder_Auto_MJW_v3(class1,class2,Grid_Scale_Factor,dX); 

f_H0_New=KDE_MJW(class1,GridCell_New); 

f_H1_New=KDE_MJW(class2,GridCell_New); 

f_H0_New_Norm=Normalize_PDF(f_H0_New); 

f_H1_New_Norm=Normalize_PDF(f_H1_New); 

d(1)=Hellinger_Distance_MJW(f_H0_New_Norm,f_H1_New_Norm,dX); 

rid(1)=discarded_features(1); 

if length(discarded_features)>1 

     for i=2:length(discarded_features) 

         clear class1 class2 Grid_New GridCell_New f_H0_New f_H1_New f_H0_New_Norm 

f_H1_New_Norm 

         class1=X0; 

         class2=X1; 

         rid(i)=discarded_features(i); 

         sortrid=sort(rid,'descend'); 

         for j=1:length(sortrid) 

             class1(:,sortrid(j))=[]; 

             class2(:,sortrid(j))=[]; 

         end 

         

[Grid_New,GridCell_New]=Grid_Builder_Auto_MJW_v3(class1,class2,Grid_Scale_Factor,dX); 

         f_H0_New=KDE_MJW(class1,GridCell_New); 

         f_H1_New=KDE_MJW(class2,GridCell_New); 
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         f_H0_New_Norm=Normalize_PDF(f_H0_New); 

         f_H1_New_Norm=Normalize_PDF(f_H1_New); 

         d(i)=Hellinger_Distance_MJW(f_H0_New_Norm,f_H1_New_Norm,dX); 

     end 

end 

dist_drop=[classdist d]; 

bar(dist_drop) 

discarded_features1=[0 discarded_features]; 

for n=1:length(discarded_features1) 

    Abscissa_Cell_Array_3(n) = {sprintf('%g',discarded_features1(n))}; 

end 

set(gca,'XTickLabel',Abscissa_Cell_Array_3) 

titlestr='Distance as Features are removed \n Distance with all features is %6.4f'; 

title(sprintf(titlestr,classdist)) 

ylabel('Distance') 

xlabelstr='Feature Label of Feature Being Removed \n 0 Feature Label Indicates No 

Features Were Removed \n Final Distance is %6.4f'; 

xlabel(sprintf(xlabelstr,dist)) 

  

figure 

bar(diff(dist_drop)) 

for n=1:length(discarded_features) 

    Abscissa_Cell_Array_4(n)={sprintf('%g',discarded_features(n))}; 

end 

set(gca,'XTickLabel',Abscissa_Cell_Array_4) 

titlestr1='Drop in distance as Features are removed \n Distance with all features is 

%6.4f'; 

title(sprintf(titlestr1,classdist)) 

ylabel('Change in distance') 

xlabelstr1='Feature Label of Feature Being Removed \n Final Distance is %6.4f'; 

xlabel(sprintf(xlabelstr1,dist)) 

 

 

 

This is the code written for the evaluation of the Hellinger distance given two PDF 

estimates. 

 
function [hd]=Hellinger_Distance_MJW(F,G,dX) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% Author: Matthew J Wilder 

%%% Date:   02/23/2011 

%%% 

%%% This function computes the Hellinger Distance for any dimensional PDF. 

%%%  

%%% Inputs:     F, G          =PDF estimates- one for each class 

%%%             dX            =Vector of sampling intervals for each  

%%%                            feature(dimension) in the feature space 

%%%                   Note:dX can be a scalar then all scaling is same 

%%% 

%%% Output:     hd            =scalar Hellinger distance 

%%% 

%%% Functions called: sumloop --> sums an array over all dimensions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

N=length(size(F)); 

if length(dX)>1 

    delta_X=prod(dX); 

else 

    delta_X=dX^N; 

end 

hd = ( ( F.^(.5) - G.^(.5) ).^2 )*delta_X; 

hd = sumloop(N,hd); 

hd  = ( 0.5*hd )^.5; 

end 
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This is the code written to compute the Bhattacharyya distance between two classes using 

the Gaussian assumption. This function was written by Grace A. Clark. 

 
function [d] = bhattacharya_GAC(class1,class2) 

  

% BHATTACHARYA class separation measure. 

%    

%   [D] = BHATTACHARYA(CLASS1,CLASS2) calculates 

%   the Bhattacharya distance D between CLASS1 and  

%   CLASS2.  CLASS1 and CLASS2 are M-by-P matrices 

%   where M is the number of observations and P 

%   is the number of features. 

  

% 

%   Author:  Dave Scott, 9/4/96 (dave-scott@llnl.gov) 

%   Copyright (c) Lawrence Livermore National Laboratory 

% 

  

[num_class2] = size(class2,1);  %p 

[num_class1] = size(class1,1);  %k 

mu_class2 = (1/num_class2*sum(class2))'; 

mu_class1 = (1/num_class1*sum(class1))'; 

sigma_class2 = cov(class2); 

sigma_class1 = cov(class1); 

%sigma_class2 = mve(class2); % Robust Covariance 

%sigma_class1 = mve(class1); % Robust Covariance 

sum_sigma = sigma_class1 + sigma_class2; 

diff_mu = mu_class2-mu_class1; 

d = 1/8*diff_mu'*inv(sum_sigma/2)*(diff_mu) +... 

    1/2*log(det(sum_sigma/2)/(sqrt(det(sigma_class1*sigma_class2)))); 

if imag(d) 

    disp('Warning:  Imaginary Values for Bhattacharya Distance.') 

    disp('          Results may be inaccurate.') 

end 

 

This is the code written to compute the Mahalanobis distance between two classes. This 

code was written by Kardi Teknomo. 

 
function d=MahalanobisDistance(A, B) 

% Return mahalanobis distance of two data matrices  

% A and B (row = object, column = feature) 

% @author: Kardi Teknomo 

% http://people.revoledu.com/kardi/index.html 

[n1, k1]=size(A); 

[n2, k2]=size(B); 

n=n1+n2; 

if(k1~=k2) 

    disp('number of columns of A and B must be the same') 

else 

    xDiff=mean(A)-mean(B);       % mean difference row vector 

    cA=cov(A); 

    cB=cov(B); 

    pC=n1/n*cA+n2/n*cB;          % pooled covariance matrix 

    d=sqrt(xDiff*inv(pC)*xDiff'); % mahalanobis distance 

end  
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This is the code written to compute the training data PDF estimate over a specified grid. 

 
function [F]=KDE_MJW(X,Grid_Cell) 

%%%%%%%%%%%%%%%%%%%% 

%%%This function will computer the PDF estimate of class X over the multi- 

%%%dimensional grid given in the cell array, Grid_Cell 

%%% 

%%%Author: Matthew Wilder 

%%% 

%%%Date:    03/03/2011 

%%% 

%%%Inputs:      X          =Class (contains measurements of features) 

%%% 

%%%             Grid_Cell  =Cell array containing the grid along each 

%%%                         feature dimension of the class X 

%%% 

%%%Output:      F          = PDF estimate of X 

%%%%%%%%%%%%%%%%%%%% 

sizeX=size(X); 

N=sizeX(2); 

%%%%The first step is to generate a combination matrix of the grid 

%%%%parameters 

vout=cell(size(Grid_Cell));             %This establishes the size for vout    

[vout{:}]=ndgrid(Grid_Cell{:});         %vout is the multidimensional grid 

%%%%%%%%%%%%%%%%%%%%% 

% These two lines are to pre-establish the size of v for speed in the loop 

% and are not necessary 

k=size(vout); 

v=zeros(numel(vout{1}),k(2)); 

%%%%%%%%%%%%%%%%%%%%% 

for a=1:N                       %This 'for' loop creates a combination 

    v(:,a)=vout{a}(:);          %matrix to allow for density estimation 

end                             %for each point in every dimension 

l=size(v); 

%%%%%%%% 

%Need to generate sigma for PDF estimation 

%%%%%%%% 

[sigma] = Specify_Sigma_ND_GAC_v2(X); 

%%%%%% 

% For KDE, put the estimates into one long vector and then use 'reshape' to 

% reshape into the N-dimensional matrix 

%%%%%% 

f=zeros(1,l(1)); 

%%% This for loop can be vectorized by simply adjusting kde_One_Point 

%%% to take the combination matrix, 'v' 

for a=1:l(1) 

    test=v(a,:)'; 

    %f(a)=sum(test);             %This is simply to test the reshape command 

    f(a)=kde_One_Point_GAC(test,X,sigma); 

end 

F=reshape(f,size(vout{1})); 
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This is the code written to determine the grid of values over which to compute the 

training data PDF estimate. 

 
Function [Grid,Grid_Cell]=Grid_Builder_Auto_MJW_v3(X_H0,X_H1,Grid_Scale_Factor,dX) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%   PUPOSE:  This code automatically builds a grid of feature values over 

%            which we desire to compute pdf estimates using a kernel 

%            density estimator.  It finds the min and max of each feature 

%            based on the measurements, then expands the min and max so we 

%            can better estimate the tails of the distribution. This 

%            version, v2, creates a combined grid for both classes. 

% 

% 

%   AUTHOR:             Matthew Wilder 

%   ORIGINATION DATE:   02/22/2011 

%   LATEST MOD. DATE:    

% 

%   INPUTS:  

%       X_H0,X_H1                 = M x N array of mearured feature vectors for one class 

%                               M = number of measured feature training vectors 

%                               N = Number of features in one training vector 

%       Grid_Scale_Factor   = 1 x N vector of scale factors by which to scale the grid. 

%                    The idea is to expand the range of the grids beyond the min and max 

%                    values of each of the features, because we want to capture the 

%               information in the tails of the distribution.  Note that each feature has 

%                               its own scale factor 

%               CAN BE SCALAR AND THEN ALL DIMENSIONS SCALED BY THIS VALUE 

% 

%       dX                  = 1 x N vector of feature sample intervals 

%                               dx1,dx2, etc. 

%               CAN BE SCALAR AND THEN ALL GRID DIMENSION ARE SCALED BY 

%               THIS VALUE 

% 

% 

%   OUTPUTS:  

%       GRID                = Matrix containing grid values over which we 

%                               wish to compute the pdf estimates 

% 

% 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

% BUILD AN APPROPRIATE GRID 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    % Retrieve parameters from the feature vector data arrays X_H0 and X_H1 

    % We assume that X_H0 and X_H1 have the same number of features N 

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

     

        SIZE_X_H0  = size(X_H0); 

        M_H0       = SIZE_X_H0(1);    % Number of measured N x 1 training feature vectors  

        N          = SIZE_X_H0(2);    % Number of features in one feature vector 

         

        SIZE_X_H1  = size(X_H1); 

        M_H1       = SIZE_X_H1(1);    % Number of measured N x 1 training feature vectors  

         

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    % Find the min and max values of all of the features  

    % in the arrays X_H0 and X_H1 

    % Form a 1 x N matrix of min or max values, corresponding to each 

    % feature 

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            % If A is a matrix, min(A) treats the columns of A as vectors,  

            % returning a row vector containing the minimum element from each column.  
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        X_H0_min    = min(X_H0);   % 1 x N vector of minimum values of the N features 

        X_H0_max    = max(X_H0);   % 1 x N vector of maximum values of the N features 

  

        X_H1_min    = min(X_H1);   % 1 x N vector of minimum values of the N features 

        X_H1_max    = max(X_H1);   % 1 x N vector of maximum values of the N features 

         

        X_min       = min(X_H0_min,X_H1_min);   % Min for the combined grid 

        X_max       = max(X_H0_max,X_H1_max);   % Min for the combined grid 

  

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    % Scale the Min and Max values of the feature vectors 

    % to allow us to calculate values outside the min and max 

    % range of the measurements - so we can capture the tails of the 

    % distribution.  Choose the Grid_Scale_Factor manually 

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    if length(Grid_Scale_Factor)>1 

        Grid_min    = Grid_Scale_Factor .* X_min; % 1 x N vector of start values for the 

grid 

        Grid_max    = Grid_Scale_Factor .* X_max; % 1 x N vector of end values for the 

grid 

    else 

        Grid_min     = Grid_Scale_Factor * X_min; 

        Grid_max     = Grid_Scale_Factor * X_max; 

    end 

         

    %Set up output Matrix 

        Grid=zeros(3,N); 

        Grid(1,:)=Grid_min; 

        Grid(3,:)=Grid_max; 

    %Enter Values into Matrix --> Format is 3xN as follows:  

    %    [Min_ft1         Min_ft2        ....] 

    %    [#pts for PDF    #pts for PDF   ....] 

    %    [Max_ft1         Max_ft2        ....] 

     

    %Loop to enter the number of points for each dimension 

    if length(dX)>1 

        for i=1:N 

            Grid(2,i)=ceil(-(Grid(1,i)-Grid(3,i))/dX(i)); 

        end 

    else 

        for i=1:N 

            Grid(2,i)=ceil(-(Grid(1,i)-Grid(3,i))/dX); 

        end 

    end 

    if length(dX)>1 

        for i=1:N 

            eval(['GridX' num2str(i) ' =Grid(1,i):dX(i):Grid(3,i);']); 

        end 

    else  

        for i=1:N 

            eval(['GridX' num2str(i) ' =Grid(1,i):dX:Grid(3,i);']); 

        end 

    end  

    for a=1:N 

        eval(['Grid_Cell{a}=GridX' num2str(a) ';']); 

    end     

end 

% 

% 

%End of Code 
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This code was written to evaluate the PDF estimate for one given point on a grid or test 

point. This function was written by Grace A. Clark. 

 
function [f] = kde_One_Point_GAC(X_test,X,sigma) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%   PUPOSE:    This code implements a 2D kernel density estimate for a single 

%               point on the pdf.  This function must be called once for 

%               every point to be estimated 

% 

%   AUTHOR:             Grace A. Clark 

%   ORIGINATION DATE:   11/11/10 

%   LATEST MOD. DATE:   12/29/10 

%   INPUTS:  

%       X_test  = (N x 1) array of grid values for the feature space, 

%                   where N = the number of features in the desired feature 

%                   space (the size of the grid) 

%                   Our goal is to estimate the pdf values at all the 

%                   points on the grid 

% 

%       X       = (M x N) array of M feature vectors (rows), each having 

%                   N features (elements) 

%    

%       sigma   = Scalar smoothing parameter for the kernel density 

%                   estimator 

%   OUTPUTS:  

%       f       = kde estimate at one point on the grid 

%   FUNCTIONS CALLED: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

% RETRIEVE NECESSARY PARAMETERS FROM THE DATA MATRIX 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  

    SIZE_X  = size(X);   % Get the matrix dimensions 

    M       = SIZE_X(1);    % Number of training feature vector 

    N       = SIZE_X(2);    % Number of features in one feature vector 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Loop 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    f_arg = 0;      % Initialize 

     

    Q = 1/( (2*pi)^(N/2)*(sigma^N)*M );     % The scale constant for the sum 

     

    for m = 1:M 

         

        X_train = X(m,:)';  % Take the transpose to get the right dimensionality for the 

                            % quadratic form in f_arg below.  

                            % I want an N x 1 vector 

         

        f_arg   = f_arg + exp(-( (X_test - X_train)'*(X_test - X_train) )/2*sigma ); 

     

    end 

     

        f = Q*f_arg;  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%%%% End of Main Code  %%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 



 112 

This code was written for the exhaustive search method using the Hellinger distance as 

the selection criterion. 
function [best]=Exhaustive_Search(X0,X1) 

%%% 

%%% This function finds the best feature subset using the Exhaustive 

%%% Search with the Hellinger distance 

n1=size(X0); 

n=n1(2); 

k=input('Enter the number of features in the final subset: ') 

GridScaleFactor=input('Enter the Grid Scale Factor: ') 

dX=input('Enter the sampling interval along each dimension: ') 

C=combnk(1:n,k); 

sizeC1=size(C); 

sizeC=sizeC1(1);    %Number of combinations 

check_dist=1:sizeC;     

for i=1:sizeC 

    clear f* class* Grid GridCell 

    for q=1:k 

            eval(['f' num2str(q) ' =C(i,q);']); 

    end 

    for w=1:k 

            eval(['class1(:,' num2str(w) ') =X0(:,f' num2str(w) ');']); 

    end 

    for r=1:k 

            eval(['class2(:,' num2str(r) ') =X1(:,f' num2str(r) ');']); 

    end 

    [Grid,GridCell]=Grid_Builder_Auto_MJW_v3(class1,class2,GridScaleFactor,dX); 

    f_class1=KDE_MJW(class1,GridCell); 

    f_class2=KDE_MJW(class2,GridCell); 

    f_class1N=Normalize_PDF(f_class1); 

    f_class2N=Normalize_PDF(f_class2); 

    check_dist(i)=Hellinger_Distance_MJW(f_class1N,f_class2N,dX); 

    val=find(check_dist==max(check_dist)); 

    best=C(val,:); 

end 

 

This is the code written for the SFS algorithm using the Hellinger distance as the 

selection criterion. 
function [Best]=SequentialForwardSelection_Hellinger(class1,class2,NumFeatComb) 

%%% SFS Algorithm---Best is the vector of the best subset 

GSF=1.1; 

dX=.1; 

NofFeatures=size(class1,2); 

cLBest=[]; 

k=1; 

while k<=NumFeatComb 

    maxJ=0; 

    for i=1:NofFeatures 

        clear f_* Grid* 

        if isempty(find(cLBest==i)) 

            combi=[cLBest i]; 

        else continue; 

        end 

        [Grid,GridCell]=Grid_Builder_Auto_MJW_v3(class1(:,combi),class2(:,combi),GSF,dX); 

        f_class1=KDE_MJW(class1(:,combi),GridCell); 

        f_class2=KDE_MJW(class2(:,combi),GridCell); 

        f_class1N=Normalize_PDF(f_class1); 

        f_class2N=Normalize_PDF(f_class2); 

        J=Hellinger_Distance_MJW(f_class1N,f_class2N,dX); 

        if J>maxJ 

            maxJ=J; 

            sofar=combi; 

        end 

    end 

    Best=sort(sofar,'ascend'); 

    k=k+1; 

end 



 113 

This is the code written for the Cain algorithm for automatic selection of the PDF 

estimate smoothing parameter. 
function    sigma = sigma_design(vectors_in_class) 

% ---------------------------------------------------------- 

%  Title:   sigma_design 

%  Author:  Peter Cheng 

%  Date:    July/96 

%  Purpose:   This code is to determine the optimum value of 

%             sigma for distinct class. This algorithm can be 

%             referenced in "An improved PNN and its performance  

%             relative to other models" by J.Bibb Cain.  

%         This appeared in SPIE vol.1294 p.354  (1990) 

%  Inputs:    vectors_in_class = the pattern vectors in the same 

%                           class, the number of columns represents 

%                           the number of features. 

%  Output:     sigma = the optimum sigma in this class is equal to  

%                    gain constant times average minimum distance 

%------------------------------------------------------------------      

[nr,nc]=size(vectors_in_class); 

dist = zeros(1,nr); 

for  ii=1:nr; 

       tmp_transpose = vectors_in_class(ii,:)'; 

       tmp_repeat = tmp_transpose(:,ones(1,nr)); 

       tmp_repeat = tmp_repeat' ; 

       vector_diff = vectors_in_class - tmp_repeat; 

       vector_dist = vector_diff.* vector_diff; 

       if nc > 1 

        dist_sq = sum(vector_dist')' ; 

       else 

         dist_sq = vector_dist; 

       end 

       [val,ind] = sort(dist_sq) ; 

       dist(ii) = sqrt(val(2)) ;     % the first one is zero 

 end 

 g_gain = 1.3; 

 sigma = g_gain * sum(dist)/nr ; 

 

This code was written to compute the 95% confidence intervals and the images presented 

in this thesis. This code was written by Grace A. Clark. 
function [N,PHAT,LLLe,UUUe]  = Conf_Int_Binomial_GAC(N,PHAT) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%  M-File   Conf_Int_GAC_v1.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% 

%   This code compute statistical confidence intervals for the 

%   probability of correct classification P(CC) of a detector, given 

%   the sample size, n. 

%   We assume a binary detection problem with hypotheses H0 and H1 

%   The intervals are about a binomial distribution 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% 

%   Author:                 Grace A. Clark 

% 

%   Date Originated:        10/8/07 

%   Date Last Modified:     11/7/07 

% 

%   Source Code:            Heart Valve and Shell Oil project codes I wrote 

%                           years ago  1/18/96 

% 

% 

%   Inputs: 

%       N           = (Scalar) Integer number of samples in the statistical test 

%                   = No. H0 samples + No. H1 samples 
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%       phat        = (Scalar) maximum likelihood estimate of the P(CC) 

%                       calculated empirically elsewhere from a confusion matrix and/or 

%                       ROC Curve 

%       deltaphat   = Discretization step in phat for making plots 

% 

%   Outputs:     

%       Ln, Un      = Normal approximation estimates of the lower and upper 

%                       bounds of the confidence interval 

%       Le, Ue      = "Exact" estimates of the lower and upper 

%                       bounds of the confidence interval 

% 

%-------------------------------------------------------------- 

% Define Variables Internal to the Code: 

% 

% Let phat =  Max. Lik. estimate of P(correct classification) 

%          = a row vector (1 X Npoints) 

% Let qhat = Max. Lik. estimate of P(incorrect classification) = 1 - phat 

%          = a row vector (1 X Npoints) 

% Let n = number of training samples or trials 

%          = a row vector (1 X Nplots) 

% Let sigma = variance to use in the confidence intervals 

%          = a matrix (Npoints X Nplots) 

% Let U    = Approximate upper bound 

%          = a matrix (Npoints X Nplots) 

% Let L    = Approximate lower bound 

%          = a matrix (Npoints X Nplots) 

% Let Ue   = Exact upper bound 

%          = a matrix (Npoints X Nplots) 

% Let Le   = Exact lower bound 

%          = a matrix (Npoints X Nplots) 

% Let Npoints = number of samples to give phat 

% Let Nplots  = number of values of n to use 

%-------------------------------------------------------------- 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% Calculate the "Exact" Bounds, Given a single value of N and a single 

% value of phat 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%  

     

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    % CALCULATE THE DESIRED EXACT BOUNDS FOR GIVEN N AND PHAT 

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    

        LLLe= ( N*PHAT + 2 - 2*(N*PHAT*(1-PHAT) +1)^.5 )/(N+4);  

        UUUe= ( N*PHAT + 2 + 2*(N*PHAT*(1-PHAT) +1)^.5 )/(N+4); 

         

            if LLLe < 0;        % Constrain the values 

                LLLe = 0.; 

            end 

             

            if UUUe > 1.; 

                UUUe = 1.; 

            end 

         

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    % CALCULATE THE NORMAL BOUNDS FOR GIVEN N AND PHAT 

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

     

        SIGMA = ((PHAT*(1-PHAT))/N)^.5; 

        LNORM = PHAT - 1.96*SIGMA;       

        UNORM = PHAT + 1.96*SIGMA; 

         

            if LNORM < 0;        % Constrain the values 

                LMORM = 0.; 

            end 
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            if UNORM > 1.; 

                UNORM = 1.; 

            end 

             

    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  

        %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

        % DISPLAY 

        %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            disp(' ') 

            disp('   

#########################################################################') 

            disp('   #####                                                               

#####') 

            disp('   #####                  "EXACT" APPROXIMATION                        

#####') 

            disp('   #####                  95% CONFIDENCE INTERVAL                      

#####') 

            disp('   #####                                                               

#####') 

            disp('   

#########################################################################')  

            disp(' ') 

            disp(' ') 

             

             

            fprintf('\t  GIVEN: %s') 

            fprintf('\n') 

            fprintf('\t\t  N = No. Samples        = %g\n',N) 

            fprintf('\t\t  phat                   = %g\n',PHAT) 

            fprintf('\n') 

            fprintf('\t  95%% CONFIDENCE INTERVAL BOUNDS: %s') 

            fprintf('\n') 

            fprintf('\t\t  Lower Bound (Exact)    = %g\n',LLLe) 

            fprintf('\t\t  Upper Bound (Exact)    = %g\n',UUUe) 

            fprintf('\n') 

            fprintf('\n') 

             

            disp('   

#########################################################################')  

            disp(' ') 

            %disp(' ')            

        %-------------------------------------------- 

             

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Define Plotting Parameters, Given the Inputs 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

     

        deltaphat = .001;               % Discretization size for the bound plots 

        Npoints = 1.0/deltaphat + 1;    % Number of points in a plot of the bounds       

        n  = [N];                       % Let the n vector be the scalar N 

        Nplots = length(n);             % Number of values of n, the sample size, to use 

in making the plots        

         

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Compute the Lower and Upper Bounds on phat for the given N and PHAT 

    % For BOTH the Normal and "Exact" Approximations 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

  

        phat = 0.0:deltaphat:1.0; 

        qhat = 1-phat; 

  



 116 

            for i=1:Npoints 

                        for j=1:Nplots 

  

                            % Rough Approximation of Bounds 

                                sigmas(i,j) = ((phat(i).*qhat(i))./n(j)).^.5;                                 

                                %sigma(i,j) = 1/(i+j-1);  % I used this to debug the code 

                                Ls(i,j) = phat(i) - 1.96*sigmas(i,j); 

                                Us(i,j) = phat(i) + 1.96*sigmas(i,j); 

  

                            % Better (exact) Approximation of Bounds 

                                Les(i,j) = ( n(j).*phat(i) + 2 - ... 

                                    2.*(n(j).*phat(i).*(1-phat(i)) +1).^.5 )/(n(j)+4); 

                                Ues(i,j) = ( n(j).*phat(i) + 2 + ... 

                                    2.*(n(j).*phat(i).*(1-phat(i)) +1).^.5 )/(n(j)+4); 

                                                                 

                                        %Constrain the confidence intervals 

                                            if  Ls(i,j) < 0; 

                                                            Ls(i,j) = 0; 

                                            end 

                                            if Us(i,j) >1.0; 

                                                        Us(i,j) =1.0; 

                                            end 

                                            if  Les(i,j) < 0; 

                                                            Les(i,j) = 0; 

                                            end 

                                            if Ues(i,j) >1.0; 

                                                        Ues(i,j) =1.0; 

                                            end 

                        end 

            end 

         

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Plot the Exact Bounds on a Single Graph 

    % OVERLAY A VERTICAL LINE FOR THE SPECIFIC PHAT specified above 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%  

       

            figure  % Start a new frame 

             

            plot(phat,Les(:,1),'-b',phat,Ues(:,1),'-b');                             

            Text_CI_1 = '95%% Conf. Ints. About P(CC), Exact for Small (or Any) n'; 

            Text_CI_2 = ' \n For Specific PHAT = %3.3g, \t N = %3.3g';  

            Text_CI_3 = ' \n Les = %1.2g, \t Ues = %1.2g, \t Green Vertical Line Marks 

PHAT'; 

            Text_CI   = [Text_CI_1,Text_CI_2,Text_CI_3]; 

            title(sprintf(Text_CI,PHAT,N,LLLe,UUUe)) 

                                                       

            hold all        % So we can plot a vertical line over the plot 

         

            plot([PHAT,PHAT],ylim,'g');      % Plot a vertical line at PHAT (From KAW) 

            % legend('Blue = Exact for Small (or Any)  n','Location','NorthWest') 

            xlabel('phat = Maximum Likelihood Estimate of P(Correct Classification)') 

            ylabel('p = P(Correct Classification)') 

            grid 

  

            hold off 

         %------------------------------------------------------------    

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            % Pause and alert the user to start working again 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                disp(' ') 

                disp('   

#########################################################################') 

                disp('   #####                                                               

#####') 
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                disp('   #####                  PRESS RETURN TO CONTINUE                     

#####') 

                disp('   #####                                                               

#####') 

                disp('   

#########################################################################')   

                pause;                                 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

      

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Plot the Exact Bounds and the Normal Approx. Bounds (for Large n) on a Single Graph 

    % OVERLAY A VERTICAL LINE FOR THE SPECIFIC PHAT specifiec above 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%  

      

            figure  % Start a new frame 

             

            plot(phat,Ls(:,1),'-b',phat,Les(:,1),'-r',phat,Us(:,1),'-b',phat,Ues(:,1),'-

r');                             

            Text_CI_1 = '95%% Conf. Ints. About P(CC), Normal Approx. and Exact for Small 

(or Any) n'; 

            Text_CI_2 = ' \n For Specific PHAT = %3.3g,\t N = %3.3g';  

            Text_CI_3 = ' \n Les = %1.2g, \t Ues = %1.2g, \t Ls = %1.2g, \t Us = %1.2g, 

\t Green Vertical Line Marks PHAT'; 

            Text_CI   = [Text_CI_1,Text_CI_2,Text_CI_3]; 

            title(sprintf(Text_CI,PHAT,N,LLLe,UUUe,LNORM,UNORM)) 

                                                       

            hold all        % So we can plot a vertical line over the plot 

         

            plot([PHAT,PHAT],ylim,'g');      % Plot a vertical line at PHAT (From KAW) 

            legend('Blue = Normal Approx. for Large n','Red = Exact for Small (or Any)  

n','Location','NorthWest') 

            xlabel('phat = Maximum Likelihood Estimate of P(Correct Classification)') 

            ylabel('p = P(Correct Classification)') 

            grid 

  

            hold off 

         %------------------------------------------------------------ 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            % Pause and alert the user to start working again 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                disp(' ') 

                disp('   

#########################################################################') 

                disp('   #####                                                               

#####') 

                disp('   #####                  PRESS RETURN TO CONTINUE                     

#####') 

                disp('   #####                                                               

#####') 

                disp('   

#########################################################################')   

                pause;                                 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% ASK THE USER IF SHE/HE WANTS TO MAKE GENERAL PLOTS OF THE BOUNDS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

  

    reply_plots   = input('\n\n Make bound plots for n = [Smallest,Medium,Largest]? (y or 

n) > ','s'); 

                    

            if reply_plots == 'y' 

                 



 118 

       

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Define Plotting Parameters, Given the Inputs 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

     

        Npoints = 1.0/deltaphat + 1;    % Number of points in a plot of the bounds       

        n   = [N 100 1000];             % The three sample sizes at which to plot the 

conf. ints.  

        Nplots = length(n);             % Number of values of n, the sample size, to use 

in making the plots 

  

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Compute the Lower and Upper Bounds on phat for Plotting Purposes 

    % For BOTH the Normal and "Exact" Approximations 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

  

        phat = 0.0:deltaphat:1.0; 

        qhat = 1-phat; 

  

            for i=1:Npoints 

                        for j=1:Nplots 

  

                            % Rough Approximation of Bounds 

                                sigma(i,j) = ((phat(i).*qhat(i))./n(j)).^.5;                                 

                                %sigma(i,j) = 1/(i+j-1);  % I used this to debug the code 

                                L(i,j) = phat(i) - 1.96*sigma(i,j); 

                                U(i,j) = phat(i) + 1.96*sigma(i,j); 

  

                            % Better (exact) Approximation of Bounds 

                                Le(i,j) = ( n(j).*phat(i) + 2 - ... 

                                    2.*(n(j).*phat(i).*(1-phat(i)) +1).^.5 )/(n(j)+4); 

                                Ue(i,j) = ( n(j).*phat(i) + 2 + ... 

                                    2.*(n(j).*phat(i).*(1-phat(i)) +1).^.5 )/(n(j)+4); 

                                                                 

                                        %Constrain the confidence intervals 

                                            if  L(i,j) < 0; 

                                                            L(i,j) = 0; 

                                            end 

                                            if U(i,j) >1.0; 

                                                        U(i,j) =1.0; 

                                            end 

                                            if  Le(i,j) < 0; 

                                                            Le(i,j) = 0; 

                                            end 

                                            if Ue(i,j) >1.0; 

                                                        Ue(i,j) =1.0; 

                                            end 

                        end 

            end 

   

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Plot the Exact Bounds on a Single Graph 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     

  

            figure 

            plot(phat,Le(:,1),'-r', phat,Le(:,2),'-g', phat,Le(:,3),'-b',  ... 
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            phat,Ue(:,1),'-r', phat,Ue(:,2),'-g', phat,Ue(:,3),'-b' ); 

            axis('square') 

            Text_Exact_1 = '95%% Conf. Ints. for P(CC) \t (Exact)'; 

            Text_Exact_2 = '\n Red: n = %3i,\t Green: n = %3i, \t Blue: n = %3i'; 

            Text_Exact = [Text_Exact_1 Text_Exact_2]; 

            title(sprintf(Text_Exact,n(1),n(2),n(3))) 

            legend('red: n = Smallest', 'green: n = Medium', 'blue: n = 

Largest','Location','NorthWest') 

            xlabel('phat = Maximum Likelihood Estimate of P(Correct Classification)') 

            ylabel('p = P(Correct Classification)') 

            grid 

  

         %------------------------------------------------------------ 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            % Pause and alert the user to start working again 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                disp(' ') 

                disp('   

#########################################################################') 

                disp('   #####                                                               

#####') 

                disp('   #####                  PRESS RETURN TO CONTINUE                     

#####') 

                disp('   #####                                                               

#####') 

                disp('   

#########################################################################')   

                pause;                                 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Plot the Normal Approximation Bounds for Large n on a Single Graph 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     

     

        figure 

        clear graph 

        axis('square') 

        plot(121) 

        plot(phat,L(:,1),'-r',   phat,L(:,2),'-g',   phat,L(:,3),'-b',  ... 

                phat,U(:,1),'-r',   phat,U(:,2),'-g',   phat,U(:,3),'-b' ); 

            axis('square') 

            Text_Normal_1 = '95%% Conf. Ints. for P(CC) \t (Normal Approximation)'; 

            Text_Normal_2 = '\n Red: n = %3i,\t Green: n = %3i, \t Blue: n = %3i'; 

            Text_Normal = [Text_Normal_1 Text_Normal_2]; 

            title(sprintf(Text_Normal,n(1),n(2),n(3))) 

            legend('red: n = Smallest', 'green: n = Medium', 'blue: n = 

Largest','Location','NorthWest') 

            xlabel('phat = Maximum Likelihood Estimate of P(Correct Classification)') 

            %label_phat = '$\widehat{p}$';  % Try using LaTeX 

            %label_phat = '$\frac{1}{2}$';  % Try using LaTeX 

            %xlabel(label_phat)             % Try using LaTeX 

            ylabel('p = P(Correct Classification)') 

            grid 

             

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

            % Pause and alert the user to start working again 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

                disp(' ') 

                disp('   

#########################################################################') 

                disp('   #####                                                               

#####') 

                disp('   #####                  PRESS RETURN TO CONTINUE                     

#####') 
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                disp('   #####                                                               

#####') 

                disp('   

#########################################################################')   

                pause;                                 

            %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

        

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Plot BOTH the Normal and "Exact" Bound Approximations on One Page 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%   

     

            figure 

     

        %Plot the Normal approximation results 

            clear graph 

            axis('square') 

            subplot(121) 

            plot(phat,L(:,1),'-r',   phat,L(:,2),'-g',   phat,L(:,3),'-b',  ... 

                phat,U(:,1),'-r',   phat,U(:,2),'-g',   phat,U(:,3),'-b' ); 

                axis('square')               

                Text_Normal_1 = '95%% Conf. Ints. for P(CC) (Normal Approx.)'; 

                Text_Normal_2 = '\n Red: n = %3i, Green: n = %3i, Blue: n = %3i'; 

                Text_Normal = [Text_Normal_1 Text_Normal_2]; 

                title(sprintf(Text_Normal,n(1),n(2),n(3))) 

                legend('red: n = Smallest', 'green: n = Medium', 'blue: n = 

Largest','Location','NorthWest')      

                xlabel('phat = ML Est. of P(Correct Classif.)') 

                ylabel('p = P(Correct Classif.)') 

                grid 

  

        % Plot the Exact results 

            subplot(122) 

            plot(phat,Le(:,1),'-r', phat,Le(:,2),'-g', phat,Le(:,3),'-b',  ... 

                    phat,Ue(:,1),'-r', phat,Ue(:,2),'-g', phat,Ue(:,3),'-b' ); 

                axis('square')              

                Text_Exact_1 = '95%% Conf. Ints. for P(CC) (Exact)'; 

                Text_Exact_2 = '\n Red: n = %3i, Green: n = %3i, Blue: n = %3i'; 

                Text_Exact = [Text_Exact_1 Text_Exact_2]; 

                title(sprintf(Text_Exact,n(1),n(2),n(3))) 

                legend('red: n = Smallest', 'green: n = Medium', 'blue: n = 

Largest','Location','NorthWest') 

                xlabel('phat = ML Est. of P(Correct Classif.)') 

                ylabel('p = P(Correct Classif.)') 

                grid 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

    % Display the Values of Ue and Le for the specific case: P(CC) = 1.0 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     

  

        %------------------------------------------------------------ 

        % Display the values of Ue and Le for P(CC) = 1.0, and the various 

        % values of n 

        %------------------------------------------------------------ 

        

            % Note that phat = 1 for the last element in the phat vector, 

            %  which is phat(Npoints) 

  

            UUe=[Ue(Npoints,1) Ue(Npoints,2) Ue(Npoints,3)]; 

            LLe=[Le(Npoints,1) Le(Npoints,2) Le(Npoints,3)]; 
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            disp(' ') 

            disp('   

#########################################################################') 

            disp('   #####                                                               

#####') 

            disp('   #####                  95% CONFIDENCE INTERVALS                     

#####') 

            disp('   #####                  FOR PHAT = 1                                 

#####')    

            disp('   #####                                                               

#####') 

            disp('   

#########################################################################')  

            disp(' ') 

            disp(' ') 

             

            disp('           n         LLe            UUe ') 

             

            format short g              % Set the format of the characters to be 

displayed 

                                        % to be the best of %g or %f 

                                        % formats, depending on the 

                                        % variable 

            disp(' ') 

            disp([ n' LLe' UUe'])       % Display the three quantities 

             

             

            disp('   

#########################################################################') 

  

             

       %------------------------------------------------------------ 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     

           

         

    end         % End the "if" loop for making plots 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     

% end       % End of the M-file 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     
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